Menu Close

L-lim-x-0-sin-x-arcsin-x-tan-x-arctan-x-




Question Number 193248 by mnjuly1970 last updated on 08/Jun/23
   L= lim_( x→0)  (( sin(x )−arcsin(x))/(tan(x)− arctan(x)))=?
$$ \\ $$$$\:\mathrm{L}=\:\mathrm{lim}_{\:{x}\rightarrow\mathrm{0}} \:\frac{\:\mathrm{sin}\left({x}\:\right)−\mathrm{arcsin}\left({x}\right)}{\mathrm{tan}\left({x}\right)−\:\mathrm{arctan}\left({x}\right)}=?\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\: \\ $$
Answered by MM42 last updated on 08/Jun/23
sinx−sin^(−1) x ∼ −(1/3)x^(3   )  &   tanx−tan^(−1) x ∼ (2/3)x^3   ⇒L=lim_(x→0)  ((−(1/3)x^3 )/((2/3)x^3 )) = −(1/2)
$${sinx}−{sin}^{−\mathrm{1}} {x}\:\sim\:−\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}\:\:\:} \:\&\:\:\:{tanx}−{tan}^{−\mathrm{1}} {x}\:\sim\:\frac{\mathrm{2}}{\mathrm{3}}{x}^{\mathrm{3}} \\ $$$$\Rightarrow{L}={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{−\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} }{\frac{\mathrm{2}}{\mathrm{3}}{x}^{\mathrm{3}} }\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *