Menu Close

Prove-that-In-any-acute-ABC-cot-2-A-cot-2-B-cot-2-C-1-Equality-is-possible-if-and-only-if-A-B-C-pi-3-




Question Number 193237 by CrispyXYZ last updated on 08/Jun/23
Prove that:  In any acute △ABC, cot^2 A+cot^2 B+cot^2 C≥1.  Equality is possible if and only if A=B=C=(π/3).
Provethat:InanyacuteABC,cot2A+cot2B+cot2C1.EqualityispossibleifandonlyifA=B=C=π3.
Answered by MM42 last updated on 09/Jun/23
0<α,β,γ<90⇒cotα ,cotβ,cotγ >0  cot^2 α+cot^2 β+cot^2 γ=  ((cot^2 α+cot^2 β)/2) +((cot^2 α+cot^2 γ)/2)+((cot^2 β+cot^2 γ)/2)≥  (√(cot^2 α×cot^2 β)) +(√(cot^2 α×cot^2 γ)) +(√(cot^2 γ×cot^2 β))=  cotα(cotβ+cotγ)+cotβcotγ=      (0<β,γ<(π/(2 )) → cotβ×cotγ≠1 )  cotα(((cotβ+cotγ)/(cotβcotγ−1)))(cotβcotγ−1)+cotβ×cotγ=  cotα×(1/(cot(β+γ)))(cotβcotγ−1)+cotβcotγ=  (∗)  β+γ=π−α  ⇒(∗)=−cotβcotβ+1+cotβcotγ=1 ✓   we showed : cotα×cotβ+cotα×cotγ+cotβ×cotγ=1  ⇒if    cot^2 α+cot^2 β+cot^2 γ=1  cot^2 α+cot^2 β+cot^2 γ=(1/2)[(cotα−cotβ)^2 +(cotα−cotγ)^2 +(cotβ−cotγ)^2 ]+ cotα×cotβ+cotα×cotγ+cotβ×cotγ  ⇒(1/2)[(cotα−cotβ)^2 +(cotα−cotγ)^2 +(cotβ−cotγ)^2 ]=0  ⇒cotα=cotβ=cotγ⇒α=β=γ=(π/3) ✓  if  α=β=γ=(π/4)⇒cot^2 α+cot^2 β+cot^2 γ=1 ✓
0<α,β,γ<90cotα,cotβ,cotγ>0cot2α+cot2β+cot2γ=cot2α+cot2β2+cot2α+cot2γ2+cot2β+cot2γ2cot2α×cot2β+cot2α×cot2γ+cot2γ×cot2β=cotα(cotβ+cotγ)+cotβcotγ=(0<β,γ<π2cotβ×cotγ1)cotα(cotβ+cotγcotβcotγ1)(cotβcotγ1)+cotβ×cotγ=cotα×1cot(β+γ)(cotβcotγ1)+cotβcotγ=()β+γ=πα()=cotβcotβ+1+cotβcotγ=1weshowed:cotα×cotβ+cotα×cotγ+cotβ×cotγ=1ifcot2α+cot2β+cot2γ=1cot2α+cot2β+cot2γ=12[(cotαcotβ)2+(cotαcotγ)2+(cotβcotγ)2]+cotα×cotβ+cotα×cotγ+cotβ×cotγ12[(cotαcotβ)2+(cotαcotγ)2+(cotβcotγ)2]=0cotα=cotβ=cotγα=β=γ=π3ifα=β=γ=π4cot2α+cot2β+cot2γ=1

Leave a Reply

Your email address will not be published. Required fields are marked *