Menu Close

Prove-that-In-any-acute-ABC-cot-2-A-cot-2-B-cot-2-C-1-Equality-is-possible-if-and-only-if-A-B-C-pi-3-




Question Number 193237 by CrispyXYZ last updated on 08/Jun/23
Prove that:  In any acute △ABC, cot^2 A+cot^2 B+cot^2 C≥1.  Equality is possible if and only if A=B=C=(π/3).
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{In}\:\mathrm{any}\:\mathrm{acute}\:\bigtriangleup{ABC},\:\mathrm{cot}^{\mathrm{2}} {A}+\mathrm{cot}^{\mathrm{2}} {B}+\mathrm{cot}^{\mathrm{2}} {C}\geqslant\mathrm{1}. \\ $$$$\mathrm{Equality}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:{A}={B}={C}=\frac{\pi}{\mathrm{3}}. \\ $$
Answered by MM42 last updated on 09/Jun/23
0<α,β,γ<90⇒cotα ,cotβ,cotγ >0  cot^2 α+cot^2 β+cot^2 γ=  ((cot^2 α+cot^2 β)/2) +((cot^2 α+cot^2 γ)/2)+((cot^2 β+cot^2 γ)/2)≥  (√(cot^2 α×cot^2 β)) +(√(cot^2 α×cot^2 γ)) +(√(cot^2 γ×cot^2 β))=  cotα(cotβ+cotγ)+cotβcotγ=      (0<β,γ<(π/(2 )) → cotβ×cotγ≠1 )  cotα(((cotβ+cotγ)/(cotβcotγ−1)))(cotβcotγ−1)+cotβ×cotγ=  cotα×(1/(cot(β+γ)))(cotβcotγ−1)+cotβcotγ=  (∗)  β+γ=π−α  ⇒(∗)=−cotβcotβ+1+cotβcotγ=1 ✓   we showed : cotα×cotβ+cotα×cotγ+cotβ×cotγ=1  ⇒if    cot^2 α+cot^2 β+cot^2 γ=1  cot^2 α+cot^2 β+cot^2 γ=(1/2)[(cotα−cotβ)^2 +(cotα−cotγ)^2 +(cotβ−cotγ)^2 ]+ cotα×cotβ+cotα×cotγ+cotβ×cotγ  ⇒(1/2)[(cotα−cotβ)^2 +(cotα−cotγ)^2 +(cotβ−cotγ)^2 ]=0  ⇒cotα=cotβ=cotγ⇒α=β=γ=(π/3) ✓  if  α=β=γ=(π/4)⇒cot^2 α+cot^2 β+cot^2 γ=1 ✓
$$\mathrm{0}<\alpha,\beta,\gamma<\mathrm{90}\Rightarrow{cot}\alpha\:,{cot}\beta,{cot}\gamma\:>\mathrm{0} \\ $$$${cot}^{\mathrm{2}} \alpha+{cot}^{\mathrm{2}} \beta+{cot}^{\mathrm{2}} \gamma= \\ $$$$\frac{{cot}^{\mathrm{2}} \alpha+{cot}^{\mathrm{2}} \beta}{\mathrm{2}}\:+\frac{{cot}^{\mathrm{2}} \alpha+{cot}^{\mathrm{2}} \gamma}{\mathrm{2}}+\frac{{cot}^{\mathrm{2}} \beta+{cot}^{\mathrm{2}} \gamma}{\mathrm{2}}\geqslant \\ $$$$\sqrt{{cot}^{\mathrm{2}} \alpha×{cot}^{\mathrm{2}} \beta}\:+\sqrt{{cot}^{\mathrm{2}} \alpha×{cot}^{\mathrm{2}} \gamma}\:+\sqrt{{cot}^{\mathrm{2}} \gamma×{cot}^{\mathrm{2}} \beta}= \\ $$$${cot}\alpha\left({cot}\beta+{cot}\gamma\right)+{cot}\beta{cot}\gamma=\:\:\:\:\:\:\left(\mathrm{0}<\beta,\gamma<\frac{\pi}{\mathrm{2}\:}\:\rightarrow\:{cot}\beta×{cot}\gamma\neq\mathrm{1}\:\right) \\ $$$${cot}\alpha\left(\frac{{cot}\beta+{cot}\gamma}{{cot}\beta{cot}\gamma−\mathrm{1}}\right)\left({cot}\beta{cot}\gamma−\mathrm{1}\right)+{cot}\beta×{cot}\gamma= \\ $$$${cot}\alpha×\frac{\mathrm{1}}{{cot}\left(\beta+\gamma\right)}\left({cot}\beta{cot}\gamma−\mathrm{1}\right)+{cot}\beta{cot}\gamma=\:\:\left(\ast\right) \\ $$$$\beta+\gamma=\pi−\alpha \\ $$$$\Rightarrow\left(\ast\right)=−{cot}\beta{cot}\beta+\mathrm{1}+{cot}\beta{cot}\gamma=\mathrm{1}\:\checkmark\: \\ $$$${we}\:{showed}\::\:{cot}\alpha×{cot}\beta+{cot}\alpha×{cot}\gamma+{cot}\beta×{cot}\gamma=\mathrm{1} \\ $$$$\Rightarrow{if}\:\:\:\:{co}\overset{\mathrm{2}} {{t}}\alpha+{cot}^{\mathrm{2}} \beta+{cot}^{\mathrm{2}} \gamma=\mathrm{1} \\ $$$${co}\overset{\mathrm{2}} {{t}}\alpha+{cot}^{\mathrm{2}} \beta+{cot}^{\mathrm{2}} \gamma=\frac{\mathrm{1}}{\mathrm{2}}\left[\left({cot}\alpha−{cot}\beta\right)^{\mathrm{2}} +\left({cot}\alpha−{cot}\gamma\right)^{\mathrm{2}} +\left({cot}\beta−{cot}\gamma\right)^{\mathrm{2}} \right]+\:{cot}\alpha×{cot}\beta+{cot}\alpha×{cot}\gamma+{cot}\beta×{cot}\gamma \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\left[\left({cot}\alpha−{cot}\beta\right)^{\mathrm{2}} +\left({cot}\alpha−{cot}\gamma\right)^{\mathrm{2}} +\left({cot}\beta−{cot}\gamma\right)^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\Rightarrow{cot}\alpha={cot}\beta={cot}\gamma\Rightarrow\alpha=\beta=\gamma=\frac{\pi}{\mathrm{3}}\:\checkmark \\ $$$${if}\:\:\alpha=\beta=\gamma=\frac{\pi}{\mathrm{4}}\Rightarrow{cot}^{\mathrm{2}} \alpha+{cot}^{\mathrm{2}} \beta+{cot}^{\mathrm{2}} \gamma=\mathrm{1}\:\checkmark \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *