Menu Close

Select-the-correct-option-with-explaination-If-1-3-log-3-M-3log-3-N-1-log-0-008-5-then-a-M-9-9-N-b-N-9-9-M-c-M-3-3-N-d-N-3-3-M-




Question Number 193253 by MATHEMATICSAM last updated on 08/Jun/23
Select the correct option with   explaination:  If (1/3)log_3 M + 3log_3 N = 1 + log_(0.008) 5 then  a. M^9  = (9/N)  b. N^9  = (9/M)  c. M^3  = (3/N)  d. N^3  = (3/M)
$$\boldsymbol{\mathrm{Select}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{correct}}\:\boldsymbol{\mathrm{option}}\:\boldsymbol{\mathrm{with}}\: \\ $$$$\boldsymbol{\mathrm{explaination}}: \\ $$$$\mathrm{If}\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{log}_{\mathrm{3}} {M}\:+\:\mathrm{3log}_{\mathrm{3}} {N}\:=\:\mathrm{1}\:+\:\mathrm{log}_{\mathrm{0}.\mathrm{008}} \mathrm{5}\:\mathrm{then} \\ $$$$\mathrm{a}.\:{M}^{\mathrm{9}} \:=\:\frac{\mathrm{9}}{{N}} \\ $$$$\mathrm{b}.\:{N}^{\mathrm{9}} \:=\:\frac{\mathrm{9}}{{M}} \\ $$$$\mathrm{c}.\:{M}^{\mathrm{3}} \:=\:\frac{\mathrm{3}}{{N}} \\ $$$$\mathrm{d}.\:{N}^{\mathrm{3}} \:=\:\frac{\mathrm{3}}{{M}}\: \\ $$
Answered by AST last updated on 08/Jun/23
log_3 (MN^9 )^(1/3) =1+x  log_(0.008) 5=x⇒(5^(−3)  )^x =5⇒x=−(1/3)  ⇒3^(2/3) =(MN^9 )^(1/3) ⇒9=MN^9 ⇒N^9 =(9/M)
$${log}_{\mathrm{3}} \left({MN}^{\mathrm{9}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{1}+{x} \\ $$$${log}_{\mathrm{0}.\mathrm{008}} \mathrm{5}={x}\Rightarrow\left(\mathrm{5}^{−\mathrm{3}} \:\right)^{{x}} =\mathrm{5}\Rightarrow{x}=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{3}^{\frac{\mathrm{2}}{\mathrm{3}}} =\left({MN}^{\mathrm{9}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \Rightarrow\mathrm{9}={MN}^{\mathrm{9}} \Rightarrow{N}^{\mathrm{9}} =\frac{\mathrm{9}}{{M}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *