Menu Close

a-b-c-gt-0-amp-a-2-b-2-c-2-3-prove-that-1-3-ab-bc-ca-a-b-c-2-1-3-1-a-b-1-b-c-1-c-a-




Question Number 193314 by York12 last updated on 10/Jun/23
  a ,b, c  > 0 &  a^2 +b^2 +c^2 =3 prove that   (((1+(3/(ab+bc+ca)) )^((a+b+c)^2 )  ))^(1/3) ≤(1+(a/b))(1+(b/c))(1+(c/a))
$$ \\ $$$$\boldsymbol{{a}}\:,\boldsymbol{{b}},\:\boldsymbol{{c}}\:\:>\:\mathrm{0}\:\&\:\:\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} =\mathrm{3}\:\boldsymbol{{prove}}\:\boldsymbol{{that}}\: \\ $$$$\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+\frac{\mathrm{3}}{\boldsymbol{{ab}}+\boldsymbol{{bc}}+\boldsymbol{{ca}}}\:\right)^{\left(\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} } \:}\leqslant\left(\mathrm{1}+\frac{\boldsymbol{{a}}}{\boldsymbol{{b}}}\right)\left(\mathrm{1}+\frac{\boldsymbol{{b}}}{\boldsymbol{{c}}}\right)\left(\mathrm{1}+\frac{\boldsymbol{{c}}}{\boldsymbol{{a}}}\right) \\ $$
Answered by witcher3 last updated on 11/Jun/23
i will Try it sir
$$\mathrm{i}\:\mathrm{will}\:\mathrm{Try}\:\mathrm{it}\:\mathrm{sir} \\ $$
Commented by York12 last updated on 12/Jun/23
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *