Menu Close

Prove-that-a-group-G-of-prime-order-is-cyclic-




Question Number 193339 by Rajpurohith last updated on 10/Jun/23
Prove that a group G of prime order is cyclic.
ProvethatagroupGofprimeorderiscyclic.
Answered by witcher3 last updated on 10/Jun/23
let g∈G−e,existe since ord(G)=p≥2  g^p =e  G contien at lest 2 element  let z→^f G        k→g^k      morphisme of Group   ker f={k∈Z suche g^k =e}  ⇒p∣k⇒k=pm  use Theorem of morphisme f induce isomorphisme  of   Z↙pZ→g  ⇒g∼Z↙pZ⇒g Cyclic
letgGe,existesinceord(G)=p2gp=eGcontienatlest2elementletzfGkgkmorphismeofGroupkerf={kZsuchegk=e}pkk=pmuseTheoremofmorphismefinduceisomorphismeofZ↙pZggZ↙pZgCyclic
Commented by Rajpurohith last updated on 11/Jun/23
Very nice sir,Thanks.
Verynicesir,Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *