Question Number 193366 by aipman last updated on 11/Jun/23
$$\mathrm{2sin}\:^{\mathrm{2}} \mathrm{2}{x}>\mathrm{3cos}\:{x}+\mathrm{3} \\ $$
Answered by Frix last updated on 11/Jun/23
$$\mathrm{2sin}^{\mathrm{2}} \:\mathrm{2}{x}\:−\mathrm{3}\left(\mathrm{1}+\mathrm{cos}\:{x}\right)>\mathrm{0} \\ $$$${c}=\mathrm{cos}\:{x} \\ $$$$−\mathrm{8}{c}^{\mathrm{4}} +\mathrm{8}{c}^{\mathrm{2}} −\mathrm{3}{c}−\mathrm{3}>\mathrm{0} \\ $$$${c}^{\mathrm{4}} −{c}^{\mathrm{2}} +\frac{\mathrm{3}{c}}{\mathrm{8}}+\frac{\mathrm{3}}{\mathrm{8}}<\mathrm{0} \\ $$$$\left({c}+\mathrm{1}\right)\left({c}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({c}^{\mathrm{2}} −\frac{\mathrm{3}{c}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{4}}\right)<\mathrm{0} \\ $$$${c}^{\mathrm{2}} −\frac{\mathrm{3}{c}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{4}}\geqslant\frac{\mathrm{3}}{\mathrm{16}} \\ $$$$\Rightarrow \\ $$$${c}+\mathrm{1}<\mathrm{0}\wedge{c}+\frac{\mathrm{1}}{\mathrm{2}}>\mathrm{0}\:\vee\:{c}+\mathrm{1}>\mathrm{0}\wedge{c}+\frac{\mathrm{1}}{\mathrm{2}}<\mathrm{0} \\ $$$${c}<−\mathrm{1}\:\mathrm{not}\:\mathrm{possible} \\ $$$$\Rightarrow \\ $$$$−\mathrm{1}<{c}<−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$−\mathrm{1}<\mathrm{cos}\:{x}\:<−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{The}\:\mathrm{rest}\:\mathrm{is}\:\mathrm{easy} \\ $$
Commented by aipman last updated on 13/Jun/23
$$ \\ $$$$\geqslant\frac{\mathrm{3}}{\mathrm{16}}\:\mathrm{where}\:\mathrm{is}\:\mathrm{it}\:\mathrm{comes}\:\mathrm{from}? \\ $$
Commented by Frix last updated on 16/Jun/23
$$\mathrm{The}\:\mathrm{minimum}\:\mathrm{of}\:{f}\left({c}\right)={c}^{\mathrm{2}} −\frac{\mathrm{3}{c}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{is}\:\frac{\mathrm{3}}{\mathrm{16}} \\ $$