Menu Close

Reduce-to-first-order-and-solve-showing-each-step-in-detail-1-y-y-3-siny-0-2-y-1-y-2-




Question Number 193371 by gloriousman last updated on 11/Jun/23
Reduce to first order and solve ,  showing each step in detail.  1. y′′ +(y′)^3 siny=0  2. y′′=1+(y′)^2
Reducetofirstorderandsolve,showingeachstepindetail.1.y+(y)3siny=02.y=1+(y)2
Answered by witcher3 last updated on 11/Jun/23
y′′+(y′)^3 sin(y)=0....(A)  first we do not know how to starte caue  just y′ cos(y(x))=z  z′=y′′cos(y)−y′^2 sin(y)...E  cosy=(z/(y′))..if y′=0⇒y=c solution suppose ∃y#constante  and y∈C_2 [a,b]⇒∃I⊂[a,b] y′≠0  this justify division by y′  E⇔z′=((zy′′)/(y′))−y′^2 sin(y)  ⇔z′y′−zy^′ ′−y′′=−y′^3 sin(y)−y′′=0byA  ⇔z′y′−y′′(z−1)=0  ⇒((z′y′−y′′(z−1))/((z−1)^2 ))=0  ⇔(d/dx)(((−y′)/((z−1))))=0  ⇒−((y′)/(z−1))=c  y′=c(z−1)⇒z=((y′)/c)+1=ay′+1  ⇒y′cos(y)−ay′=1⇒sin(y)−ay=x+c  ⇒   { ((y′′+y′^3 sin(y)=0)),((sin(y)−ay=x+c)) :}
y+(y)3sin(y)=0.(A)firstwedonotknowhowtostartecauejustycos(y(x))=zz=ycos(y)y2sin(y)EYou can't use 'macro parameter character #' in math modeandyC2[a,b]I[a,b]y0thisjustifydivisionbyyEz=zyyy2sin(y)Prime causes double exponent: use braces to clarifyzyy(z1)=0zyy(z1)(z1)2=0ddx(y(z1))=0yz1=cy=c(z1)z=yc+1=ay+1ycos(y)ay=1sin(y)ay=x+c{y+y3sin(y)=0sin(y)ay=x+c
Answered by witcher3 last updated on 11/Jun/23
2,y′=z⇔z′=1+z^2 ⇒∫(dz/(z^2 +1))=∫1=x+c=arctan(z)  ⇒z=tan(x+c),∀x∈R−{(π/2)+kπ−c}  z=y′=tan(x+c)⇒y=−ln∣cos(x+c)∣+c_1   c,c_1 ∈R
2,y=zz=1+z2dzz2+1=1=x+c=arctan(z)z=tan(x+c),xR{π2+kπc}z=y=tan(x+c)y=lncos(x+c)+c1c,c1R
Answered by aleks041103 last updated on 12/Jun/23
1. y′′+(y′)^3 sin(y)=0  ⇒−((y′′)/((y′)^2 ))+(−sin(y))y′=0  ⇒((1/(y′))+cos(y))′=0⇒(1/(y′))+cos(y)=a=const.  ⇒y′=(1/(a−cos(y)))  ⇒(a−cos(y))dy=dx  ⇒ay−sin(y)+b=x, a,b=const.    2.y′′=1+(y′)^2   ⇒((y′′)/(1+(y′)^2 ))=(actan(y′))′=1  ⇒arctan(y′)=x+a, a=const.  ⇒y′=(dy/dx)=tan(x+a)  ⇒dy=tan(x+a)dx  ⇒y=∫((sin(x+a))/(cos(x+a)))dx=−∫((d(cos(x+a)))/(cos(x+a)))  ⇒y=−ln(cos(x+a))+b, a,b=const.
1.y+(y)3sin(y)=0y(y)2+(sin(y))y=0(1y+cos(y))=01y+cos(y)=a=const.y=1acos(y)(acos(y))dy=dxaysin(y)+b=x,a,b=const.2.y=1+(y)2y1+(y)2=(actan(y))=1arctan(y)=x+a,a=const.y=dydx=tan(x+a)dy=tan(x+a)dxy=sin(x+a)cos(x+a)dx=d(cos(x+a))cos(x+a)y=ln(cos(x+a))+b,a,b=const.

Leave a Reply

Your email address will not be published. Required fields are marked *