Reduce-to-first-order-and-solve-showing-each-step-in-detail-1-y-y-3-siny-0-2-y-1-y-2- Tinku Tara June 11, 2023 Algebra 0 Comments FacebookTweetPin Question Number 193371 by gloriousman last updated on 11/Jun/23 Reducetofirstorderandsolve,showingeachstepindetail.1.y″+(y′)3siny=02.y″=1+(y′)2 Answered by witcher3 last updated on 11/Jun/23 y″+(y′)3sin(y)=0….(A)firstwedonotknowhowtostartecauejusty′cos(y(x))=zz′=y″cos(y)−y′2sin(y)…EYou can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math modeandy∈C2[a,b]⇒∃I⊂[a,b]y′≠0thisjustifydivisionbyy′E⇔z′=zy″y′−y′2sin(y)Prime causes double exponent: use braces to clarifyPrime causes double exponent: use braces to clarify⇔z′y′−y″(z−1)=0⇒z′y′−y″(z−1)(z−1)2=0⇔ddx(−y′(z−1))=0⇒−y′z−1=cy′=c(z−1)⇒z=y′c+1=ay′+1⇒y′cos(y)−ay′=1⇒sin(y)−ay=x+c⇒{y″+y′3sin(y)=0sin(y)−ay=x+c Answered by witcher3 last updated on 11/Jun/23 2,y′=z⇔z′=1+z2⇒∫dzz2+1=∫1=x+c=arctan(z)⇒z=tan(x+c),∀x∈R−{π2+kπ−c}z=y′=tan(x+c)⇒y=−ln∣cos(x+c)∣+c1c,c1∈R Answered by aleks041103 last updated on 12/Jun/23 1.y″+(y′)3sin(y)=0⇒−y″(y′)2+(−sin(y))y′=0⇒(1y′+cos(y))′=0⇒1y′+cos(y)=a=const.⇒y′=1a−cos(y)⇒(a−cos(y))dy=dx⇒ay−sin(y)+b=x,a,b=const.2.y″=1+(y′)2⇒y″1+(y′)2=(actan(y′))′=1⇒arctan(y′)=x+a,a=const.⇒y′=dydx=tan(x+a)⇒dy=tan(x+a)dx⇒y=∫sin(x+a)cos(x+a)dx=−∫d(cos(x+a))cos(x+a)⇒y=−ln(cos(x+a))+b,a,b=const. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 2sin-2-2x-gt-3cos-x-3-Next Next post: If-log-a-y-1-3-and-log-8-a-x-1-then-show-that-y-2-x-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.