Menu Close

Evaluate-I-0-1-x-5-x-4-x-3-x-2-x-1-dx-




Question Number 193377 by Humble last updated on 12/Jun/23
Evaluate  I=∫_0 ^( ∞) (1/(x^5 +x^4 +x^3 +x^2 +x+1))dx
EvaluateI=01x5+x4+x3+x2+x+1dx
Commented by Frix last updated on 12/Jun/23
x^5 +x^4 +x^3 +x^2 +x+1=  =(x+1)(x^2 −x+1)(x^2 +x+1)  Just decompose and solve it!
x5+x4+x3+x2+x+1==(x+1)(x2x+1)(x2+x+1)Justdecomposeandsolveit!
Answered by Mathspace last updated on 16/Jun/23
I=∫_0 ^∞   (dx/(1+x+x^2 +x^3 +x^4 +x^5 ))  I=∫_0 ^∞    (dx/((1−x^6 )/(1−x)))=∫_0 ^∞ ((1−x)/(1−x^6 ))dx  =∫_0 ^1 ((1−x)/(1−x^6 ))dx +∫_1 ^∞ ((1−x)/(1−x^6 ))dx(→x=(1/t))  =∫_0 ^1 ((1−x)/(1−x^6 ))dx−∫_0 ^1 ((1−(1/t))/(1−(1/t^6 )))×((−dt)/t^2 )  =∫_0 ^1 ((1−x)/(1−x^6 ))dx+∫_0 ^1 (1/t^3 ).((t−1)/(t^6 −1)).t^6 dt  =∫_0 ^1 ((1−x)/(1−x^6 ))dx+∫_0 ^1 ((t^4 −t^3 )/(t^6 −1))dt  =∫_0 ^1 ((1−x)/(1−x^6 ))dx+∫_0 ^1 ((x^3 −x^4 )/(1−x^6 ))dx  =∫_0 ^1 ((1−x+x^3 −x^4 )/(1−x^6 ))dx  =∫_0 ^1 (1−x+x^3 −x^4 )Σ_(n=0) ^∞ x^(6n) dx  =Σ_(n=0) ^∞ ∫_0 ^1 (x^(6n) −x^(6n+1) +x^(6n+3) −x^(6n+4) )dx  =Σ_(n=0) ^∞ ((1/(6n+1))−(1/(6n+2))+(1/(6n+4))−(1/(6n+5)))  =Σ_(n=0) ^∞ (1/((6n+1)(6n+2)))  +Σ_(n=0) ^∞ (1/((6n+4)(6n+5)))  we have  Σ_(n=0) ^∞ (1/((6n+1)(6n+2)))  =(1/(36))Σ_(n=0) ^∞ (1/((n+(1/6))(n+(1/3))))  =(1/(36)).((Ψ((1/3))−Ψ((1/6)))/((1/3)−(1/6)))  =(1/6){Ψ((1/3))−Ψ((1/6))}  Σ_(n=0) ^∞ (1/((6n+4)(6n+5)))  =(1/(36))Σ_(n=0) ^∞ (1/((n+(2/3))(n+(5/6))))  =(1/(36)).((Ψ((5/6))−Ψ((2/3)))/((5/6)−(2/3)))  =(1/6)(Ψ((5/6))−Ψ((2/3)))  ⇒I=(1/6){Ψ((1/3))−Ψ((1/6))+Ψ((5/6))−Ψ((2/3))}  after use special values of Ψ....
I=0dx1+x+x2+x3+x4+x5I=0dx1x61x=01x1x6dx=011x1x6dx+11x1x6dx(x=1t)=011x1x6dx0111t11t6×dtt2=011x1x6dx+011t3.t1t61.t6dt=011x1x6dx+01t4t3t61dt=011x1x6dx+01x3x41x6dx=011x+x3x41x6dx=01(1x+x3x4)n=0x6ndx=n=001(x6nx6n+1+x6n+3x6n+4)dx=n=0(16n+116n+2+16n+416n+5)=n=01(6n+1)(6n+2)+n=01(6n+4)(6n+5)wehaven=01(6n+1)(6n+2)=136n=01(n+16)(n+13)=136.Ψ(13)Ψ(16)1316=16{Ψ(13)Ψ(16)}n=01(6n+4)(6n+5)=136n=01(n+23)(n+56)=136.Ψ(56)Ψ(23)5623=16(Ψ(56)Ψ(23))I=16{Ψ(13)Ψ(16)+Ψ(56)Ψ(23)}afterusespecialvaluesofΨ.

Leave a Reply

Your email address will not be published. Required fields are marked *