Menu Close

0-1-1-e-x-dx-




Question Number 21398 by math1967 last updated on 23/Sep/17
∫_( 0) ^∞    (1/(1+e^x )) dx =
011+exdx=
Answered by sma3l2996 last updated on 23/Sep/17
e^x =t⇒dx=(dt/t)  ∫_0 ^∞ (dx/(1+e^x ))=∫_1 ^∞ (dt/(t(t+1)))=∫_1 ^∞ (dt/t)−∫_1 ^∞ (dx/(1+t))=[ln((t/(1+t)))]_1 ^∞   ∫_0 ^∞ (dx/(1+e^x ))=lim_(x→∞) ln((t/(1+t)))−ln((1/2))=ln((1/((1/t)+1)))+ln2  ∫_0 ^∞ (dx/(1+e^x ))=ln(1)+ln2=ln(2)
ex=tdx=dtt0dx1+ex=1dtt(t+1)=1dtt1dx1+t=[ln(t1+t)]10dx1+ex=limlnx(t1+t)ln(12)=ln(11t+1)+ln20dx1+ex=ln(1)+ln2=ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *