Menu Close

0-1-x-1-x-n-dx-




Question Number 81663 by zainal tanjung last updated on 14/Feb/20
 ∫_( 0) ^1   x (1−x)^n  dx =
$$\:\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:{x}\:\left(\mathrm{1}−{x}\right)^{{n}} \:{dx}\:= \\ $$
Commented by Tony Lin last updated on 14/Feb/20
B(p, q)=∫_0 ^1 x^(p−1) (1−x)^(q−1) dx, p>0,q>0  ⇒∫_0 ^1 x(1−x)^n dx  =B(2, n+1)  =((Γ(2)Γ(n+1))/(Γ(n+3)))  =((1×n!)/((n+2)!))  =(1/((n+1)(n+2)))
$${B}\left({p},\:{q}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{p}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{q}−\mathrm{1}} {dx},\:{p}>\mathrm{0},{q}>\mathrm{0} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\mathrm{1}−{x}\right)^{{n}} {dx} \\ $$$$={B}\left(\mathrm{2},\:{n}+\mathrm{1}\right) \\ $$$$=\frac{\Gamma\left(\mathrm{2}\right)\Gamma\left({n}+\mathrm{1}\right)}{\Gamma\left({n}+\mathrm{3}\right)} \\ $$$$=\frac{\mathrm{1}×{n}!}{\left({n}+\mathrm{2}\right)!} \\ $$$$=\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)} \\ $$
Commented by abdomathmax last updated on 14/Feb/20
by parts u=x and v^(′ ) =(1−x)^n   ∫_0 ^1 x(1−x)^n  dx =[−(1/(n+1))x(1−x)^(n+1) ]_0 ^1   +∫_0 ^1  (1/(n+1))(1−x)^(n+1)  dx =(1/(n+1))∫_0 ^1 (1−x)^(n+1)  dx  =(1/(n+1))×((−1)/(n+2))[(1−x)^(n+2) ]_0 ^1 =(1/((n+1)(n+2)))
$${by}\:{parts}\:{u}={x}\:{and}\:{v}^{'\:} =\left(\mathrm{1}−{x}\right)^{{n}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\mathrm{1}−{x}\right)^{{n}} \:{dx}\:=\left[−\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}\left(\mathrm{1}−{x}\right)^{{n}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{n}+\mathrm{1}}\left(\mathrm{1}−{x}\right)^{{n}+\mathrm{1}} \:{dx}\:=\frac{\mathrm{1}}{{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{n}+\mathrm{1}} \:{dx} \\ $$$$=\frac{\mathrm{1}}{{n}+\mathrm{1}}×\frac{−\mathrm{1}}{{n}+\mathrm{2}}\left[\left(\mathrm{1}−{x}\right)^{{n}+\mathrm{2}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *