Menu Close

0-pi-2-1-1-tan-x-dx-




Question Number 64333 by Chi Mes Try last updated on 16/Jul/19
∫_( 0) ^(π/2)   (1/(1+tan x)) dx =
π/2011+tanxdx=
Commented by mathmax by abdo last updated on 16/Jul/19
let I =∫_0 ^(π/2)   (dx/(1+tanx)) changement tanx =t give  I =∫_0 ^(+∞)    (dt/((1+t^2 )(1+t)))  let decompose F(t)=(1/((t+1)(t^2  +1)))  F(t)=(a/(t+1)) +((bt+c)/(t^2  +1))  a=lim_(t→−1) (t+1)F(t) =(1/2)  lim_(t→+∞)  tF(t) =0 =a+b ⇒b=−(1/2) ⇒F(t) =(1/(2(t+1))) +((−(1/2)t +c)/(t^2  +1))  F(0)=1 =(1/2) +c ⇒c=(1/2) ⇒F(t) =(1/(2(t+1))) −(1/2) ((t−1)/(t^2  +1)) ⇒  I =∫_0 ^∞ ((1/(2(t+1)))−(1/4)((2t)/(t^2  +1)))dt +(1/2)∫_0 ^∞  (dt/(t^2  +1))  =(1/2)[ln∣t+1∣−(1/2)ln(t^2  +1)]_0 ^(+∞)  +(π/4)  =(1/2)[ln∣((t+1)/( (√(t^2  +1))))∣]_0 ^(+∞)  +(π/4) =0 +(π/4) ⇒ I =(π/4) .
letI=0π2dx1+tanxchangementtanx=tgiveI=0+dt(1+t2)(1+t)letdecomposeF(t)=1(t+1)(t2+1)F(t)=at+1+bt+ct2+1a=limt1(t+1)F(t)=12limt+tF(t)=0=a+bb=12F(t)=12(t+1)+12t+ct2+1F(0)=1=12+cc=12F(t)=12(t+1)12t1t2+1I=0(12(t+1)142tt2+1)dt+120dtt2+1=12[lnt+112ln(t2+1)]0++π4=12[lnt+1t2+1]0++π4=0+π4I=π4.
Commented by Tony Lin last updated on 17/Jul/19
∫_0 ^(π/2) (1/(1+tanx))dx  =∫_0 ^(π/2) ((cosx)/(cosx+sinx))dx  =∫_0 ^(π/2) ((cos(cosx−sinx))/((cosx+sinx)(cosx−sinx)))dx  =∫_0 ^(π/2) ((cos^2 x−cosxsinx)/(cos^2 x−sin^2 x))dx  =(1/2)∫_0 ^(π/2) ((cos2x+1−sin2x)/(cos2x))dx  =(1/2)∫_0 ^(π/2) dx−(1/2)∫_0 ^(π/2) tan2xdx+(1/2)∫_0 ^(π/2) sec2xdx  =(π/4)
0π211+tanxdx=0π2cosxcosx+sinxdx=0π2cos(cosxsinx)(cosx+sinx)(cosxsinx)dx=0π2cos2xcosxsinxcos2xsin2xdx=120π2cos2x+1sin2xcos2xdx=120π2dx120π2tan2xdx+120π2sec2xdx=π4
Answered by Rio Michael last updated on 16/Jul/19
begin with  ∫(1/(1+tanx))dx  I = ∫(1/(1+tanx))dx      use the substitution u = tanx  I = ∫(1/((1+u^2 )(1+u)))du  I = (1/2)∫((1/(1+u^2 )) + (1/(1+u)))du  I = (1/2)∫((1/(1+u^2 ))−(1/2) ((2u)/(1+u^2 )) + (1/(1+u)))du  I = (1/2)(arctanu−(1/2)ln(1+u^2 )+ln(1+u))  I = ⌈ (1/2)(x−ln(secx) + ln(1+tanx))⌉_0 ^(π/2)   I = (1/2)((π/2)+ln(sin(π/2)+cos(π/2))) = (π/4)
beginwith11+tanxdxI=11+tanxdxusethesubstitutionu=tanxI=1(1+u2)(1+u)duI=12(11+u2+11+u)duI=12(11+u2122u1+u2+11+u)duI=12(arctanu12ln(1+u2)+ln(1+u))I=12(xln(secx)+ln(1+tanx))0π2I=12(π2+ln(sinπ2+cosπ2))=π4
Answered by Tanmay chaudhury last updated on 17/Jul/19
I=∫_0 ^(π/2) ((cosx)/(cosx+sinx))dx  =∫_0 ^(π/2) ((cos((π/2)−x))/(cos((π/2)−x)+sin((π/2)−x)))dx  =∫_0 ^(π/2) ((sinx)/(sinx+cox))dx  2I=∫_0 ^(π/2) ((cosx)/(sinx+cosx))+((sinx)/(cosx+sinx))dx  2I=∫_0 ^(π/2) dx  I=(π/4)
I=0π2cosxcosx+sinxdx=0π2cos(π2x)cos(π2x)+sin(π2x)dx=0π2sinxsinx+coxdx2I=0π2cosxsinx+cosx+sinxcosx+sinxdx2I=0π2dxI=π4

Leave a Reply

Your email address will not be published. Required fields are marked *