0-pi-2-cot-x-cot-x-tan-x-dx- Tinku Tara June 14, 2023 None 0 Comments FacebookTweetPin Question Number 83146 by 09658867628 last updated on 28/Feb/20 ∫π/20cotxcotx+tanxdx= Answered by Kunal12588 last updated on 28/Feb/20 I=∫0π/2cotxcotx+tanxdx⇒I=∫0π/2tanxtanx+cotxdx⇒I=12∫0π/2dx⇒I=12×π2=π4∫π/20cotxcotx+tanxdx=π4 Answered by niroj last updated on 28/Feb/20 let,I=∫0π2cotxcotx+tanxdx…..(i)=∫0π2cot(π2−x)cot(π2−x)+tan(π2−x)dx∵∫0axdx=∫0a(a−x)dx=∫0π2tanxtanx+cotxdx……(ii)added(i)&(ii)2I=∫0π2(cotxcotx+tanx+tanxtanx+cotx)dx2I=∫0π2(cotx+tanxcotx+tanx)dx2I=∫0π2dx2I=[x]0π22I=(π2−0)2I=π2⇒I=π4//. Commented by peter frank last updated on 28/Feb/20 thankyouboth Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-4-e-x-dx-Next Next post: 0-100-sin-x-x-pi-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.