Menu Close

0-pi-2-f-x-f-x-f-pi-2-x-dx-




Question Number 59976 by soufiane last updated on 16/May/19
∫_( 0) ^(π/2)  ((f(x))/(f(x)+f((π/2)−x))) dx =
π/20f(x)f(x)+f(π2x)dx=
Answered by tanmay last updated on 16/May/19
I=∫_0 ^(π/2) ((f(x))/(f(x)+f((π/2)−x)))dx  t=(π/2)−x  dt=−dx  I=∫_(π/2) ^0  ((f((π/2)−t))/(f((π/2)−t)+f(t)))×−dt  I=∫_0 ^(π/2) ((f((π/2)−t))/(f((π/2)−t)+f(t)))dt→∫_0 ^(π/2) ((f((π/2)−x))/(f((π/2)−x)+f(x)))dx  now ∫_a ^b f(x)dx=∫_a ^b f(t)dt  so  2I=∫_0 ^(π/2) ((f(x))/(f(x)+f((π/2)−x)))dx+∫_0 ^(π/2) ((f((π/2)−x))/(f((π/2)−x)+f(x)))dx  2I=∫_0 ^(π/2) dx  2I=(π/2)→I=(π/4)  ■direct formula  ∫_a ^b f(x)dx=∫_0 ^b f(a+b−x)dx  I=∫_0 ^(π/2) ((f(x))/(f(x)+f((π/2)−x)))dx  I=∫_0 ^(π/2) ((f((π/2)−x))/(f((π/2)−x)+f(x)))dx  2I=∫_0 ^(π/2) ((f((π/2)−x)+f(x))/(f(x)+f((π/2)−x)))dx  2I=∫_0 ^(π/2) dx  I=(π/4)
I=0π2f(x)f(x)+f(π2x)dxt=π2xdt=dxI=π20f(π2t)f(π2t)+f(t)×dtI=0π2f(π2t)f(π2t)+f(t)dt0π2f(π2x)f(π2x)+f(x)dxnowabf(x)dx=abf(t)dtso2I=0π2f(x)f(x)+f(π2x)dx+0π2f(π2x)f(π2x)+f(x)dx2I=0π2dx2I=π2I=π4◼directformulaabf(x)dx=0bf(a+bx)dxI=0π2f(x)f(x)+f(π2x)dxI=0π2f(π2x)f(π2x)+f(x)dx2I=0π2f(π2x)+f(x)f(x)+f(π2x)dx2I=0π2dxI=π4
Answered by Prithwish sen last updated on 16/May/19
I=∫_0 ^(π/2)  ((f((π/2)−x))/(f((π/2)−x)+f(x)))dx  ∴2I=∫_0 ^(π/2)  ((f((π/2)−x)+f(x))/(f((π/2)−x)+f(x))) dx          =∫_0 ^(π/2) dx =(π/2)  ∴I =(π/4)
I=0π2f(π2x)f(π2x)+f(x)dx2I=0π2f(π2x)+f(x)f(π2x)+f(x)dx=0π2dx=π2I=π4

Leave a Reply

Your email address will not be published. Required fields are marked *