0-pi-2-log-4-3-sin-x-4-3-cos-x-dx- Tinku Tara June 14, 2023 None 0 Comments FacebookTweetPin Question Number 91493 by Zainal Arifin last updated on 01/May/20 ∫π/20log(4+3sinx4+3cosx)dx= Commented by mathmax by abdo last updated on 01/May/20 I=∫0π2ln(1+34sinx1+34cosx)=∫0π2ln(1+34sinx)−∫0π2ln(1+34cosx)letf(a)=∫0π2ln(1+asinx)with0<a<1f′(a)=∫0π2sinx1+asinxdx=1a∫0π21+asinx−11+asinxdx=π2a−1a∫0π2dx1+asinxbut∫0π2dx1+asinx=tan(x2)=t∫012dt(1+t2)(1+a2t1+t2)=2∫01dt1+t2+2at=2∫01dtt2+2at+1=2∫01dt(t+a)2+1−a2=t+a=1−a2u2∫a1−a21+a1−a21−a2du(1−a2)(1+u2)=21−a2(arctan(1+a1−a2)−arctan(a1−a2))⇒f(a)=π2ln(a)−2∫1a1−a2arctan(1+a1−a2)da+2∫1a1−a2arctan(a1−a2)+cwehave∫1a1−a2arctan(a1−a2)=a=sinx∫1sinxcosxarctan(sinxcosx)cosxdx=∫xsinxdx∫1a1−a2arctan(1+a1−a2)da=a=cosx−∫1cosxsinxarctan(1+cosxsinx)sinxdx=−∫1cosxarctan(2cos2(x2)2sin(x2)cos(x2))dx=−∫1cosxarctan(1tanx)dx=−∫1cosx(π2−x)=−π2∫dxcosx+∫xcosxdx….becontinued… Answered by MJS last updated on 01/May/20 ln4+3sinx4+3cosx=−ln4+3sin(π2−x)4+3cos(π2−x)⇒⇒answeris0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Factorise-x-2-y-2-z-2-2xy-Next Next post: The-value-of-the-integral-1-3-3-x-3-dx-lies-in-the-interval- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.