Menu Close

0-pi-2-log-4-3-sin-x-4-3-cos-x-dx-




Question Number 91493 by Zainal Arifin last updated on 01/May/20
∫_( 0) ^(π/2)  log (((4+3 sin x)/(4+3 cos x)))dx =
π/20log(4+3sinx4+3cosx)dx=
Commented by mathmax by abdo last updated on 01/May/20
I =∫_0 ^(π/2) ln(((1+(3/4)sinx)/(1+(3/4)cosx))) =∫_0 ^(π/2) ln(1+(3/4)sinx)−∫_0 ^(π/2) ln(1+(3/4)cosx)  let f(a) =∫_0 ^(π/2) ln(1+a sinx)  with 0<a<1  f^′ (a) =∫_0 ^(π/2)  ((sinx)/(1+asinx))dx =(1/a)∫_0 ^(π/2)  ((1+asinx−1)/(1+asinx))dx  =(π/(2a))−(1/a)∫_0 ^(π/2)  (dx/(1+asinx))  but ∫_0 ^(π/2)  (dx/(1+asinx)) =_(tan((x/2))=t)  ∫_0 ^1  ((2dt)/((1+t^2 )(1+a((2t)/(1+t^2 )))))  =2∫_0 ^1  (dt/(1+t^2  +2at)) =2 ∫_0 ^1  (dt/(t^2  +2at +1)) =2 ∫_0 ^1  (dt/((t+a)^2  +1−a^2 ))  =_(t+a =(√(1−a^2 ))u)      2 ∫_(a/( (√(1−a^2 )))) ^((1+a)/( (√(1−a^2 ))))       (((√(1−a^2 ))du)/((1−a^2 )(1+u^2 )))  =(2/( (√(1−a^2 ))))( arctan(((1+a)/( (√(1−a^2 )))))−arctan((a/( (√(1−a^2 )))))) ⇒  f(a) =(π/2)ln(a)−2 ∫   (1/(a(√(1−a^2 )))) arctan(((1+a)/( (√(1−a^2 )))))da  +2∫  (1/(a(√(1−a^2 )))) arctan((a/( (√(1−a^2 ))))) +c  we have  ∫  (1/(a(√(1−a^2 )))) arctan((a/( (√(1−a^2 ))))) =_(a=sinx)   ∫ (1/(sinx cosx))arctan(((sinx)/(cosx)))cosxdx  =∫  (x/(sinx)) dx  ∫  (1/(a(√(1−a^2 )))) arctan(((1+a)/( (√(1−a^2 )))))da =_(a =cosx)   − ∫(1/(cosx sinx))arctan(((1+cosx)/(sinx)))sinxdx  =−∫  (1/(cosx)) arctan(((2cos^2 ((x/2)))/(2sin((x/2))cos((x/2)))))dx  =−∫ (1/(cosx)) arctan((1/(tanx)))dx =−∫ (1/(cosx))((π/2) −x)  =−(π/2)∫ (dx/(cosx)) +∫  (x/(cosx))dx....be continued...
I=0π2ln(1+34sinx1+34cosx)=0π2ln(1+34sinx)0π2ln(1+34cosx)letf(a)=0π2ln(1+asinx)with0<a<1f(a)=0π2sinx1+asinxdx=1a0π21+asinx11+asinxdx=π2a1a0π2dx1+asinxbut0π2dx1+asinx=tan(x2)=t012dt(1+t2)(1+a2t1+t2)=201dt1+t2+2at=201dtt2+2at+1=201dt(t+a)2+1a2=t+a=1a2u2a1a21+a1a21a2du(1a2)(1+u2)=21a2(arctan(1+a1a2)arctan(a1a2))f(a)=π2ln(a)21a1a2arctan(1+a1a2)da+21a1a2arctan(a1a2)+cwehave1a1a2arctan(a1a2)=a=sinx1sinxcosxarctan(sinxcosx)cosxdx=xsinxdx1a1a2arctan(1+a1a2)da=a=cosx1cosxsinxarctan(1+cosxsinx)sinxdx=1cosxarctan(2cos2(x2)2sin(x2)cos(x2))dx=1cosxarctan(1tanx)dx=1cosx(π2x)=π2dxcosx+xcosxdx.becontinued
Answered by MJS last updated on 01/May/20
ln ((4+3sin x)/(4+3cos x)) =−ln ((4+3sin ((π/2)−x))/(4+3cos ((π/2)−x))) ⇒  ⇒ answer is 0
ln4+3sinx4+3cosx=ln4+3sin(π2x)4+3cos(π2x)answeris0

Leave a Reply

Your email address will not be published. Required fields are marked *