Menu Close

0-pi-2-log-sin-2x-dx-




Question Number 52946 by gunawan last updated on 15/Jan/19
∫_( 0) ^(π/2)   log sin 2x dx =
π/20logsin2xdx=
Commented by maxmathsup by imad last updated on 15/Jan/19
let A =∫_0 ^(π/2) log(sin(2x))dx ⇒A=_(2x=t)   (1/2)∫_0 ^π log(sint)dt  ⇒2A =∫_0 ^(π/2) log(sint)dt +∫_(π/2) ^π log(sint)dt but we have proved that  ∫_0 ^(π/2) log(sint)dt =−(π/2)ln(2) also ∫_(π/2) ^π log(sint)dt =_(t =(π/2)+u) ∫_0 ^(π/2) log(sin((π/2)+u))du  =∫_0 ^(π/2) log(cosu)du =−(π/2)ln(2) (result proved) ⇒  2A =−πln(2) ⇒A=−(π/2)ln(2).
letA=0π2log(sin(2x))dxA=2x=t120πlog(sint)dt2A=0π2log(sint)dt+π2πlog(sint)dtbutwehaveprovedthat0π2log(sint)dt=π2ln(2)alsoπ2πlog(sint)dt=t=π2+u0π2log(sin(π2+u))du=0π2log(cosu)du=π2ln(2)(resultproved)2A=πln(2)A=π2ln(2).
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
t=2x  I=∫_0 ^π lnsint×(dt/2)  I=∫_0 ^π lnsint×(dt/2)  (1/2)∫_0 ^π lnsintdt  [now ∫_0 ^(2a) f(x)dx=2∫_0 ^a f(x)dx when f(2a−x)=f(x)]  so (1/2)∫_0 ^π lnsintdt   [lnsin(π−t)=lnsint]  I=(1/2)×2∫_0 ^(π/2) lnsintdt  I=∫_0 ^(π/2) lnsin((π/2)−t)dt  2I=∫_0 ^(π/2) lnsint+lncost dt(/)p  2I=∫_0 ^(π/2) ln(((2sintcost)/2))dt  =∫_0 ^(π/2) [lnsin2t−ln2]dt  2I=∫_0 ^(π/2) lnsin2tdt−ln2∫_0 ^(π/2) dt  2I=I−ln2×∣t∣_0 ^(π/2)   I=−ln2×(π/2) pls check...
t=2xI=0πlnsint×dt2I=0πlnsint×dt2120πlnsintdt[now02af(x)dx=20af(x)dxwhenf(2ax)=f(x)]so120πlnsintdt[lnsin(πt)=lnsint]I=12×20π2lnsintdtI=0π2lnsin(π2t)dt2I=0π2lnsint+lncostdtp2I=0π2ln(2sintcost2)dt=0π2[lnsin2tln2]dt2I=0π2lnsin2tdtln20π2dt2I=Iln2×t0π2I=ln2×π2plscheck
Commented by gunawan last updated on 16/Jan/19
Nice Sir  thank you so much
NiceSirthankyousomuch
Commented by tanmay.chaudhury50@gmail.com last updated on 16/Jan/19
most welcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *