Menu Close

0-pi-2-log-tan-x-cot-x-dx-




Question Number 12926 by kashyappushpendrak1811@gmail.c last updated on 07/May/17
∫_( 0) ^(π/2)  log ∣tan x+cot x∣ dx =
π/20logtanx+cotxdx=
Answered by ajfour last updated on 07/May/17
0≤x≤π/2  ⇒      0≤2x≤π  tan x+cot x=((sin x)/(cos x))+((cos x)/(sin x))  =(1/((sin x)(cos x))) = (2/(sin 2x))  for 0≤2x≤π   ,  (2/(sin 2x)) ≥2 .  so,  I =∫_0 ^(π/2) ln ∣tan x+cot x∣dx             = ∫_0 ^(π/2) ln (2cosec 2x)dx  I=2∫_0 ^(π/4) ln (2cosec 2x)dx  ....(1)  I = 2∫_0 ^(π/4) ln (2cosec [2((π/4)−x)]dx    I =2∫_0 ^(π/4) ln (2sec 2x)dx   .....(2)  adding (1) & (2):  2I=2∫_0 ^(π/4) ln (4cosec 2x.sec 2x )dx  I=∫_0 ^(π/4) ln ((4/((1/2)sin 4x)))dx    =∫_0 ^(π/4) [ln 4−ln ((1/2)sin  4x)]dx    =2ln 2∫_0 ^(π/4) dx+∫_0 ^(π/4) ln (2cosec 4x)dx    I=(2ln 2)(π/4)+∫_0 ^(π/4) ln (2cosec 4x)dx  let 2x=z   ⇒   dx=(dz/2)  x=0  ⇒  z=0  and   x=π/4   ⇒  z= π/2  I =(π/2)ln 2 +∫_0 ^(π/2) ln (2cosec 2z)(dz/2)  I =(π/2)ln 2+(1/2)∫_0 ^(π/2) ln (2cosec 2x)dx  I =(π/2)ln 2+(I/2)  I =πln 2 .
0xπ/202xπtanx+cotx=sinxcosx+cosxsinx=1(sinx)(cosx)=2sin2xfor02xπ,2sin2x2.so,I=π/20lntanx+cotxdx=π/20ln(2cosec2x)dxI=2π/40ln(2cosec2x)dx.(1)I=2π/40ln(2cosec[2(π4x)]dxI=2π/40ln(2sec2x)dx..(2)adding(1)&(2):2I=2π/40ln(4cosec2x.sec2x)dxI=π/40ln(412sin4x)dx=π/40[ln4ln(12sin4x)]dx=2ln2π/40dx+π/40ln(2cosec4x)dxI=(2ln2)(π/4)+π/40ln(2cosec4x)dxlet2x=zdx=dz2x=0z=0andx=π/4z=π/2I=π2ln2+π/20ln(2cosec2z)dz2I=π2ln2+12π/20ln(2cosec2x)dxI=π2ln2+I2I=πln2.

Leave a Reply

Your email address will not be published. Required fields are marked *