Menu Close

0-pi-2-x-sin-x-1-cos-x-dx-




Question Number 53693 by gunawan last updated on 25/Jan/19
 ∫_( 0) ^(π/2)  ((x+sin x)/(1+cos x)) dx =
π/20x+sinx1+cosxdx=
Commented by maxmathsup by imad last updated on 25/Jan/19
let I =∫_0 ^(π/2)   ((x+sinx)/(1+cosx)) ⇒I =∫_0 ^(π/2)   (x/(1+cosx))dx +∫_0 ^(π/2)   ((sinx)/(1+cosx))dx but  ∫_0 ^(π/2)   ((sinx)/(1+cosx))dx =−∫_0 ^(π/2)   (((cosx)^, )/(1+cosx)) dx =−[ln∣1+cosx∣]_0 ^(π/2) =−(−ln(2))=ln(2)  ∫_0 ^(π/2)   (x/(1+cosx))dx =(1/2) ∫_0 ^(π/2)   (x/(cos^2 ((x/2))))dx =(1/2) ∫_0 ^(π/2) x(1+tan^2 ((x/2))dx but  ∫_0 ^(π/2) x(1+tan^2 ((x/2)))dx =_((x/2)=t)     ∫_0 ^(π/4)  (2t)(1+tan^2 t)(2)dt  =4 ∫_0 ^(π/4)  t(1+tan^2 t)dt   by parts u=t and v^′ =1+tan^2 t ⇒  ∫_0 ^(π/4)  t(1+tan^2 t)dt =[t tant]_0 ^(π/4)  −∫_0 ^(π/4)  tant dt  =(π/4) + ∫_0 ^(π/4)   ((−sint)/(cost)) dt =(π/4) +[ln∣cost∣]_0 ^(π/4)  =(π/4) +ln((1/( (√2))))=(π/4) −(1/2)ln(2) ⇒  ∫_0 ^(π/2) x(1+tan^2 ((x/2)))dx =π−2ln(2) ⇒  I =ln(2) +(1/2)(π−2ln(2)) ⇒ I =(π/2) .
letI=0π2x+sinx1+cosxI=0π2x1+cosxdx+0π2sinx1+cosxdxbut0π2sinx1+cosxdx=0π2(cosx),1+cosxdx=[ln1+cosx]0π2=(ln(2))=ln(2)0π2x1+cosxdx=120π2xcos2(x2)dx=120π2x(1+tan2(x2)dxbut0π2x(1+tan2(x2))dx=x2=t0π4(2t)(1+tan2t)(2)dt=40π4t(1+tan2t)dtbypartsu=tandv=1+tan2t0π4t(1+tan2t)dt=[ttant]0π40π4tantdt=π4+0π4sintcostdt=π4+[lncost]0π4=π4+ln(12)=π412ln(2)0π2x(1+tan2(x2))dx=π2ln(2)I=ln(2)+12(π2ln(2))I=π2.
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19
∫_0 ^(π/2) (x/(1+cosx))dx−∫_0 ^(π/2) ((d(1+cosx))/(1+cosx))  ∫_0 ^(π/2) x×(1/(2cos^2 (x/2)))−∫_0 ^(π/2) ((d(1+cosx))/(1+cosx))  now...  ∫xsec^2 (x/2)dx  x×((tan(x/2))/(1/2))−∫[(dx/dx)∫sec^2 (x/2)dx]dx  =2xtan(x/2)−∫((tan(x/2))/(1/2))dx  =2xtan(x/2)−2lnsec(x/2)  so  (1/2)∫_0 ^(π/2) xsec^2 (x/2)−∫_0 ^(π/2) ((d(1+cosx))/(1+cosx))  (1/2)∣2xtan(x/2)−2lnsec(x/2)∣_0 ^(π/2) −∣ln(1+cosx)∣_0 ^(π/2)   ={((π/2)tan(π/4)−lnsec(π/4))−(0×tan(0/2)−lnsec0)}−{ln(1+0)−ln(1+1)}  ={((π/2)×1−ln(√2) )−(0−0)}−{0−ln2}  =(π/2)−(1/2)ln2+ln2  =(π/2)+(1/2)ln2  pls check steps...
0π2x1+cosxdx0π2d(1+cosx)1+cosx0π2x×12cos2x20π2d(1+cosx)1+cosxnowxsec2x2dxx×tanx212[dxdxsec2x2dx]dx=2xtanx2tanx212dx=2xtanx22lnsecx2so120π2xsec2x20π2d(1+cosx)1+cosx122xtanx22lnsecx20π2ln(1+cosx)0π2={(π2tanπ4lnsecπ4)(0×tan02lnsec0)}{ln(1+0)ln(1+1)}={(π2×1ln2)(00)}{0ln2}=π212ln2+ln2=π2+12ln2plschecksteps

Leave a Reply

Your email address will not be published. Required fields are marked *