Menu Close

0-pi-2-x-x-pi-2-x-dx-




Question Number 69328 by mhmd last updated on 22/Sep/19
∫_( 0) ^(π/2)  ((φ(x))/(φ(x)+φ((π/2) −x))) dx =
π/20ϕ(x)ϕ(x)+ϕ(π2x)dx=
Commented by mathmax by abdo last updated on 22/Sep/19
let I =∫_0 ^(π/2)   ((ϕ(x))/(ϕ(x)+ϕ((π/2)−x)))dx  changement (π/2)−x =t give  I = −∫_0 ^(π/2)   ((ϕ((π/2)−t))/(ϕ((π/2)−t)+ϕ(t)))(−dt) =∫_0 ^(π/2) ((ϕ((π/2)−x))/(ϕ(x)+ϕ((π/2)−x))) ⇒  2I =∫_0 ^(π/2) ((ϕ(x)+ϕ((π/2)−x))/(ϕ(x)+ϕ((π/2)−x)))dx =∫_0 ^(π/2) dx =(π/2) ⇒I =(π/4)
letI=0π2φ(x)φ(x)+φ(π2x)dxchangementπ2x=tgiveI=0π2φ(π2t)φ(π2t)+φ(t)(dt)=0π2φ(π2x)φ(x)+φ(π2x)2I=0π2φ(x)+φ(π2x)φ(x)+φ(π2x)dx=0π2dx=π2I=π4

Leave a Reply

Your email address will not be published. Required fields are marked *