Menu Close

0-pi-x-tan-x-sec-x-cos-x-dx-




Question Number 52947 by gunawan last updated on 15/Jan/19
∫_( 0) ^π   ((x tan x)/(sec x+cos x)) dx =
π0xtanxsecx+cosxdx=
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
∫_0 ^π ((x×((sinx)/(cosx)))/((1/(cosx))+cosx))dx  ∫_0 ^π ((xsinx)/(1+cos^2 x))dx=∫_0 ^π (((π−x)sin(π−x))/(1+cos^2 (π−x)))dx  2I=∫_0 ^π ((xsinx+(π−x)sinx)/(1+cos^2 x))dx  2I=π∫_0 ^π ((sinx)/(1+cos^2 x))dx  2I=(−π)∫_0 ^π ((d(cosx))/(1+cos^2 x))  −2I=π×∣tan^(−1) (cosx)∣_0 ^π   I=(((−π)/2) )×{tan^(−1) (−1)−tan^(−1) (1)}  =(((−π))/2)×{−2tan^(−1) (1)}  =(π/2)×2×(π/4)=(π^2 /4)  pls check...
0πx×sinxcosx1cosx+cosxdx0πxsinx1+cos2xdx=0π(πx)sin(πx)1+cos2(πx)dx2I=0πxsinx+(πx)sinx1+cos2xdx2I=π0πsinx1+cos2xdx2I=(π)0πd(cosx)1+cos2x2I=π×tan1(cosx)0πI=(π2)×{tan1(1)tan1(1)}=(π)2×{2tan1(1)}=π2×2×π4=π24plscheck
Commented by gunawan last updated on 16/Jan/19
Good bless you Sir
GoodblessyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *