Menu Close

0-r-pi-sin-2n-x-dx-




Question Number 53694 by gunawan last updated on 25/Jan/19
 ∫_( 0) ^(r π)   sin^(2n) x dx =
rπ0sin2nxdx=
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19
∫_0 ^π sinxdx=∣−cosx∣_0 ^π =−(cosπ−cos0)=2  so the area of each loop of f(x)=sinx is 2  f(x)=sin^(2n) x  f(rπ−x)=[sin(rπ−x)]^(2n) =[eitther +sinx or −sinx]  but [sin(rπ−x)]^(2n) =sin^(2n) x  now ∫_0 ^(2a) f(x)dx=2∫_0 ^a f(x)dx when f(2a−x)=f(x)  sinx =sin(2π+x) peridocity 2π  ∫_0 ^(rπ) sin^(2n) xdx  =∫_0 ^((r/2)×2π) sin^(2n) xdx  =(r/2)∫_0 ^(2π) sin^(2n) xdx  =(r/2)×2∫_0 ^π sin^(2n) xdx[∫_0 ^(2a) f(x)dx=2∫_0 ^a f(x)dx   whenf(2a−x)=f(x)]  =2r×∫_0 ^(π/2) sin^(2n) xdx  gamma function...  2∫_0 ^(π/2) sin^(2p−1) xcos^(2q−1) xdx=((⌈(p)⌈(q))/(⌈(p+q)))  r×2∫_0 ^(π/2) sin^(2n+1−1) xcos^(2×(1/2)−1) dx  =r×((⌈(2n+1)⌈((1/2)))/(⌈(2n+1+(1/2))))  i have tried to solve..others pls check...
0πsinxdx=∣cosx0π=(cosπcos0)=2sotheareaofeachloopoff(x)=sinxis2f(x)=sin2nxf(rπx)=[sin(rπx)]2n=[eitther+sinxorsinx]but[sin(rπx)]2n=sin2nxnow02af(x)dx=20af(x)dxwhenf(2ax)=f(x)sinx=sin(2π+x)peridocity2π0rπsin2nxdx=0r2×2πsin2nxdx=r202πsin2nxdx=r2×20πsin2nxdx[02af(x)dx=20af(x)dxwhenf(2ax)=f(x)]=2r×0π2sin2nxdxgammafunction20π2sin2p1xcos2q1xdx=(p)(q)(p+q)r×20π2sin2n+11xcos2×121dx=r×(2n+1)(12)(2n+1+12)ihavetriedtosolve..othersplscheck

Leave a Reply

Your email address will not be published. Required fields are marked *