Menu Close

0-x-log-x-1-x-2-2-dx-




Question Number 59049 by ugwu Kingsley last updated on 03/May/19
 ∫_( 0) ^∞  ((x log x)/((1+x^2 )^2 )) dx =
0xlogx(1+x2)2dx=
Commented by maxmathsup by imad last updated on 04/May/19
let  A =∫_0 ^∞   ((xln(x))/((1+x^2 )^2 )) dx⇒ A =∫_0 ^1   ((xln(x))/((1+x^2 )^2 ))dx+∫_1 ^(+∞)   ((xln(x))/((1+x^2 )^2 )) dx  ∫_1 ^(+∞)   ((xln(x))/((1+x^2 )^2 )) dx =_(x=(1/t))  −∫_0 ^1   (1/(t(1+(1/t^2 ))^2 )) ln((1/t))((−dt)/t^2 )  =−∫_0 ^1    ((ln(t))/(t^3 (((1+t^2 )/t^2 ))^2 )) dt  =−∫_0 ^1     ((tln(t))/((1+t^2 )^2 )) ⇒ A =0 .
letA=0xln(x)(1+x2)2dxA=01xln(x)(1+x2)2dx+1+xln(x)(1+x2)2dx1+xln(x)(1+x2)2dx=x=1t011t(1+1t2)2ln(1t)dtt2=01ln(t)t3(1+t2t2)2dt=01tln(t)(1+t2)2A=0.

Leave a Reply

Your email address will not be published. Required fields are marked *