Question Number 83075 by mhmd last updated on 27/Feb/20
$$\underset{−\mathrm{1}\:\:} {\overset{\mathrm{3}} {\int}}\:\left(\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}\:+\:\mathrm{tan}^{−\mathrm{1}} \:\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}\right){dx}\:= \\ $$
Commented by mathmax by abdo last updated on 27/Feb/20
$${we}\:{have}\:{arctan}\left({u}\right)+{arctan}\left(\frac{\mathrm{1}}{{u}}\right)=\frac{\pi}{\mathrm{2}}\:{if}\:{u}>\mathrm{0}\:{and} \\ $$$${arctanu}\:+{arctan}\left(\frac{\mathrm{1}}{{u}}\right)=−\frac{\pi}{\mathrm{2}}\:{if}\:{u}<\mathrm{0}\:\Rightarrow \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{3}} \left({arctan}\left(\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}\right)+{arctan}\left(\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}\right)\right){dx} \\ $$$$=\int_{−\mathrm{1}} ^{\mathrm{0}} \left({arctan}\left(\frac{{x}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\right)+{arctan}\left(\frac{{x}^{\mathrm{2}} \:+\mathrm{1}}{{x}}\right)\right){dx}\:+\int_{\mathrm{0}} ^{\mathrm{3}} \left({arctan}\left(\frac{{x}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\right)+{arctan}\left(\frac{{x}^{\mathrm{2}} \:+\mathrm{1}}{{x}}\right)\right){dx} \\ $$$$=−\frac{\pi}{\mathrm{2}}\int_{−\mathrm{1}} ^{\mathrm{0}} \:{dx}\:+\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{3}} \:{dx}\:=−\frac{\pi}{\mathrm{2}}\left(\mathrm{0}+\mathrm{1}\right)+\frac{\pi}{\mathrm{2}}×\mathrm{3} \\ $$$$=−\frac{\pi}{\mathrm{2}}+\frac{\mathrm{3}\pi}{\mathrm{2}}\:=\pi \\ $$
Answered by mind is power last updated on 27/Feb/20
$${tan}^{−} \left({x}\right)+{tan}^{−} \left(\frac{\mathrm{1}}{{x}}\right)=\frac{\pi}{\mathrm{2}}{sign}\left({x}\right) \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{3}} {\sum}}\int_{{k}−\mathrm{1}} ^{{k}} \left\{{tan}^{−} \left(\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)+{tan}^{−} \left(\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}\right)\right\}{dx} \\ $$$$=\int_{−\mathrm{1}} ^{\mathrm{0}} −\frac{\pi}{\mathrm{2}}{dx}+\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} \frac{\pi}{\mathrm{2}}{dx} \\ $$$$=−\frac{\pi}{\mathrm{2}}+\frac{\mathrm{3}\pi}{\mathrm{2}}=\pi \\ $$