Question Number 83145 by 09658867628 last updated on 28/Feb/20
$$\:\underset{\:\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:{e}^{\sqrt{{x}}} \:{dx}\:= \\ $$
Commented by mathmax by abdo last updated on 28/Feb/20
$${I}=\int_{\mathrm{1}} ^{\mathrm{4}} \:{e}^{\sqrt{{x}}} {dx}\:\:{changement}\:\sqrt{{x}}={t}\:{give} \\ $$$${I}=\int_{\mathrm{1}} ^{\mathrm{2}} \:{e}^{{t}} \left(\mathrm{2}{t}\right){dt}\:=\mathrm{2}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:{t}\:{e}^{{t}} \:{dt}\:=_{{byparts}} \:\:\mathrm{2}\left\{\:\left[{te}^{{t}} \right]_{\mathrm{1}} ^{\mathrm{2}} \:−\int_{\mathrm{1}} ^{\mathrm{2}} \:{e}^{{t}} \:{dt}\right\} \\ $$$$=\mathrm{2}\left\{\mathrm{2}{e}^{\mathrm{2}} −{e}\:−\left({e}^{\mathrm{2}} −{e}\right)\right\}\:=\mathrm{2}\left\{{e}^{\mathrm{2}} \right\}\:\Rightarrow{I}\:=\mathrm{2}{e}^{\mathrm{2}} \\ $$
Answered by Kunal12588 last updated on 28/Feb/20
$$\sqrt{{x}}={t} \\ $$$${dx}=\mathrm{2}{tdt} \\ $$$${I}=\mathrm{2}\int_{\mathrm{1}} ^{\mathrm{2}} {te}^{{t}} {dt}=\mathrm{2}\left\{\left[{te}^{{t}} \right]_{\mathrm{1}} ^{\mathrm{2}} −\int_{\mathrm{1}} ^{\mathrm{2}} {e}^{{t}} {dt}\right\} \\ $$$$\Rightarrow{I}=\mathrm{2}\left\{\mathrm{2}{e}^{\mathrm{2}} −{e}−\left[{e}^{{t}} \right]_{\mathrm{1}} ^{\mathrm{2}} \right\} \\ $$$$\Rightarrow{I}=\mathrm{2}\left\{\mathrm{2}{e}^{\mathrm{2}} −{e}−{e}^{\mathrm{2}} +{e}\right\} \\ $$$$\Rightarrow{I}=\mathrm{2}{e}^{\mathrm{2}} \\ $$$$\:\underset{\:\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:{e}^{\sqrt{{x}}} \:{dx}\:=\mathrm{2}{e}^{\mathrm{2}} ;\:{i}\:{hope}\:{this}\:{is}\:{correct} \\ $$