Menu Close

1-4-e-x-dx-




Question Number 83145 by 09658867628 last updated on 28/Feb/20
 ∫_( 1) ^4  e^(√x)  dx =
41exdx=
Commented by mathmax by abdo last updated on 28/Feb/20
I=∫_1 ^4  e^(√x) dx  changement (√x)=t give  I=∫_1 ^2  e^t (2t)dt =2 ∫_1 ^2  t e^t  dt =_(byparts)   2{ [te^t ]_1 ^2  −∫_1 ^2  e^t  dt}  =2{2e^2 −e −(e^2 −e)} =2{e^2 } ⇒I =2e^2
I=14exdxchangementx=tgiveI=12et(2t)dt=212tetdt=byparts2{[tet]1212etdt}=2{2e2e(e2e)}=2{e2}I=2e2
Answered by Kunal12588 last updated on 28/Feb/20
(√x)=t  dx=2tdt  I=2∫_1 ^2 te^t dt=2{[te^t ]_1 ^2 −∫_1 ^2 e^t dt}  ⇒I=2{2e^2 −e−[e^t ]_1 ^2 }  ⇒I=2{2e^2 −e−e^2 +e}  ⇒I=2e^2    ∫_( 1) ^4  e^(√x)  dx =2e^2 ; i hope this is correct
x=tdx=2tdtI=212tetdt=2{[tet]1212etdt}I=2{2e2e[et]12}I=2{2e2ee2+e}I=2e241exdx=2e2;ihopethisiscorrect

Leave a Reply

Your email address will not be published. Required fields are marked *