Menu Close

1-e-e-log-x-dx-




Question Number 64266 by Chi Mes Try last updated on 16/Jul/19
 ∫_(1/e) ^e  ∣ log x ∣ dx =
e1/elogxdx=
Answered by ajfour last updated on 16/Jul/19
I=−∫_(1/e) ^(  1) ln xdx+∫_1 ^(  e) ln xdx     =−(xln x−x)∣_(1/e) ^e +(xln x−x)∣_1 ^e      =−(e−e)+(−(1/e)−(1/e))                    +(e−e)−(0−1)  ⇒  ∫_(1/e) ^(  e) ∣ln x∣dx = 1−(2/e) .
I=1/e1lnxdx+1elnxdx=(xlnxx)1/ee+(xlnxx)1e=(ee)+(1e1e)+(ee)(01)1/eelnxdx=12e.

Leave a Reply

Your email address will not be published. Required fields are marked *