Menu Close

1-e-e-log-x-dx-




Question Number 64266 by Chi Mes Try last updated on 16/Jul/19
 ∫_(1/e) ^e  ∣ log x ∣ dx =
$$\:\underset{\mathrm{1}/{e}} {\overset{{e}} {\int}}\:\mid\:\mathrm{log}\:{x}\:\mid\:{dx}\:= \\ $$
Answered by ajfour last updated on 16/Jul/19
I=−∫_(1/e) ^(  1) ln xdx+∫_1 ^(  e) ln xdx     =−(xln x−x)∣_(1/e) ^e +(xln x−x)∣_1 ^e      =−(e−e)+(−(1/e)−(1/e))                    +(e−e)−(0−1)  ⇒  ∫_(1/e) ^(  e) ∣ln x∣dx = 1−(2/e) .
$${I}=−\int_{\mathrm{1}/{e}} ^{\:\:\mathrm{1}} \mathrm{ln}\:{xdx}+\int_{\mathrm{1}} ^{\:\:{e}} \mathrm{ln}\:{xdx} \\ $$$$\:\:\:=−\left({x}\mathrm{ln}\:{x}−{x}\right)\mid_{\mathrm{1}/{e}} ^{{e}} +\left({x}\mathrm{ln}\:{x}−{x}\right)\mid_{\mathrm{1}} ^{{e}} \\ $$$$\:\:\:=−\left({e}−{e}\right)+\left(−\frac{\mathrm{1}}{{e}}−\frac{\mathrm{1}}{{e}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({e}−{e}\right)−\left(\mathrm{0}−\mathrm{1}\right) \\ $$$$\Rightarrow\:\:\int_{\mathrm{1}/{e}} ^{\:\:{e}} \mid\mathrm{ln}\:{x}\mid{dx}\:=\:\mathrm{1}−\frac{\mathrm{2}}{{e}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *