Menu Close

1-e-log-x-dx-




Question Number 21467 by nawroozdawry last updated on 24/Sep/17
∫_( 1) ^e   log x dx =
e1logxdx=
Answered by $@ty@m last updated on 24/Sep/17
I=∫logx.1dx   =logx∫1dx−∫(1/x).xdx  =xlogx−x+C   ∴∫_1 ^e logxdx=[xlogx−x]_1 ^e     =(eloge−e)−(log 1−1)   =e−e−0+1  =1
I=logx.1dx=logx1dx1x.xdx=xlogxx+CMissing \left or extra \right=(elogee)(log11)=ee0+1=1

Leave a Reply

Your email address will not be published. Required fields are marked *