Menu Close

1-e-tan-x-t-1-t-2-dt-1-e-cot-x-1-t-1-t-2-dt-




Question Number 27294 by iy last updated on 04/Jan/18
∫_(1/e) ^(tan x) (t/(1+t^2 )) dt + ∫_(1/e) ^(cot x)  (1/(t(1+t^2 ))) dt =
tanx1/et1+t2dt+cotx1/e1t(1+t2)dt=
Commented by prakash jain last updated on 05/Jan/18
(A)  ∫_(1/e) ^(tan x) (t/(1+t^2 ))dt=(1/2)[ln (1+tan^2 x)−ln (1+(1/e^2 ))]  =(1/2)[ln (sec^2 x)−ln (1+(1/e^2 ))]  =ln (secx)−(1/2)ln (1+(1/e^2 ))  ∫_(1/e) ^(cot x) (1/(t(1+t^2 )))dt  ∫_(1/e) ^(cot x) ((t/t^2 )−(t/(1+t^2 )))dt  =[ln t−(1/2)ln (1+t^2 )]_(1/e) ^(cot x)   (B)  =ln cot x−(1/2)ln (1+cot^2 x)−ln (1/e)+(1/2)ln (1+(1/e^2 ))  =ln cot x−ln cosec x−ln (1/e)+(1/2)ln (1+(1/e^2 ))  A+B  ln sec x+ln cot x−ln cosec x+1  =ln (sec x∙cot x)−ln cosec x+1  =ln cosec x−ln cosec x+1  =1
(A)1/etanxt1+t2dt=12[ln(1+tan2x)ln(1+1e2)]=12[ln(sec2x)ln(1+1e2)]=ln(secx)12ln(1+1e2)1/ecotx1t(1+t2)dt1/ecotx(tt2t1+t2)dt=[lnt12ln(1+t2)]1/ecotx(B)=lncotx12ln(1+cot2x)ln1e+12ln(1+1e2)=lncotxlncosecxln1e+12ln(1+1e2)A+Blnsecx+lncotxlncosecx+1=ln(secxcotx)lncosecx+1=lncosecxlncosecx+1=1

Leave a Reply

Your email address will not be published. Required fields are marked *