1-e-tan-x-t-1-t-2-dt-1-e-cot-x-1-t-1-t-2-dt- Tinku Tara June 14, 2023 None 0 Comments FacebookTweetPin Question Number 27294 by iy last updated on 04/Jan/18 ∫tanx1/et1+t2dt+∫cotx1/e1t(1+t2)dt= Commented by prakash jain last updated on 05/Jan/18 (A)∫1/etanxt1+t2dt=12[ln(1+tan2x)−ln(1+1e2)]=12[ln(sec2x)−ln(1+1e2)]=ln(secx)−12ln(1+1e2)∫1/ecotx1t(1+t2)dt∫1/ecotx(tt2−t1+t2)dt=[lnt−12ln(1+t2)]1/ecotx(B)=lncotx−12ln(1+cot2x)−ln1e+12ln(1+1e2)=lncotx−lncosecx−ln1e+12ln(1+1e2)A+Blnsecx+lncotx−lncosecx+1=ln(secx⋅cotx)−lncosecx+1=lncosecx−lncosecx+1=1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-1-x-2-cos-x-log-2-x-2-x-dx-0-Next Next post: The-value-of-the-integral-0-pi-1-a-2-2a-cos-x-1-dx-a-lt-1-is- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.