Menu Close

2n-boys-are-randomly-divided-into-two-subgroups-containing-n-boys-each-The-probability-that-the-two-tallest-boys-are-in-different-groups-is-




Question Number 31255 by Tip Top last updated on 04/Mar/18
2n boys are randomly divided into two  subgroups containing n boys each. The  probability that the two tallest boys are  in different groups is
$$\mathrm{2}{n}\:\mathrm{boys}\:\mathrm{are}\:\mathrm{randomly}\:\mathrm{divided}\:\mathrm{into}\:\mathrm{two} \\ $$$$\mathrm{subgroups}\:\mathrm{containing}\:{n}\:\mathrm{boys}\:\mathrm{each}.\:\mathrm{The} \\ $$$$\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\mathrm{two}\:\mathrm{tallest}\:\mathrm{boys}\:\mathrm{are} \\ $$$$\mathrm{in}\:\mathrm{different}\:\mathrm{groups}\:\mathrm{is} \\ $$
Answered by MJS last updated on 05/Mar/18
we have (2n−2) black marbles  and 2 red ones  we draw n marbles without  returning  we search the probability for  exactly 1 red and (n−1) black  marbles   ((n),(1) )×(2/(2n))×((2n−2)/(2n−1))×((2n−3)/(2n−2))×...×(n/(n+1))=  =((2n(2n−2)!/(n−1)!)/((2n)!/n!))=  =((2n(2n−2)!n!)/((2n)!(n−1)!))=  =(n/(2n−1))
$$\mathrm{we}\:\mathrm{have}\:\left(\mathrm{2n}−\mathrm{2}\right)\:\mathrm{black}\:\mathrm{marbles} \\ $$$$\mathrm{and}\:\mathrm{2}\:\mathrm{red}\:\mathrm{ones} \\ $$$$\mathrm{we}\:\mathrm{draw}\:\mathrm{n}\:\mathrm{marbles}\:\mathrm{without} \\ $$$$\mathrm{returning} \\ $$$$\mathrm{we}\:\mathrm{search}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{for} \\ $$$$\mathrm{exactly}\:\mathrm{1}\:\mathrm{red}\:\mathrm{and}\:\left(\mathrm{n}−\mathrm{1}\right)\:\mathrm{black} \\ $$$$\mathrm{marbles} \\ $$$$\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}×\frac{\mathrm{2}}{\mathrm{2}{n}}×\frac{\mathrm{2}{n}−\mathrm{2}}{\mathrm{2}{n}−\mathrm{1}}×\frac{\mathrm{2}{n}−\mathrm{3}}{\mathrm{2}{n}−\mathrm{2}}×…×\frac{{n}}{{n}+\mathrm{1}}= \\ $$$$=\frac{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{2}\right)!/\left({n}−\mathrm{1}\right)!}{\left(\mathrm{2}{n}\right)!/{n}!}= \\ $$$$=\frac{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{2}\right)!{n}!}{\left(\mathrm{2}{n}\right)!\left({n}−\mathrm{1}\right)!}= \\ $$$$=\frac{{n}}{\mathrm{2}{n}−\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *