Menu Close

A-and-B-can-complete-a-piece-of-work-in-12-days-and-24-days-respectively-After-A-had-worked-for-6-days-B-joined-him-and-then-they-completed-the-work-How-much-should-A-receive-as-his-share-from-th




Question Number 95985 by mpym last updated on 29/May/20
A and B can complete a piece of work in  12 days and 24 days respectively. After  A had worked for 6 days, B joined him,  and then they completed the work. How  much should  A receive as his share from  the total amount of Rs. 180 paid for  completing the work?
$$\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{can}\:\mathrm{complete}\:\mathrm{a}\:\mathrm{piece}\:\mathrm{of}\:\mathrm{work}\:\mathrm{in} \\ $$$$\mathrm{12}\:\mathrm{days}\:\mathrm{and}\:\mathrm{24}\:\mathrm{days}\:\mathrm{respectively}.\:\mathrm{After} \\ $$$$\mathrm{A}\:\mathrm{had}\:\mathrm{worked}\:\mathrm{for}\:\mathrm{6}\:\mathrm{days},\:\mathrm{B}\:\mathrm{joined}\:\mathrm{him}, \\ $$$$\mathrm{and}\:\mathrm{then}\:\mathrm{they}\:\mathrm{completed}\:\mathrm{the}\:\mathrm{work}.\:\mathrm{How} \\ $$$$\mathrm{much}\:\mathrm{should}\:\:\mathrm{A}\:\mathrm{receive}\:\mathrm{as}\:\mathrm{his}\:\mathrm{share}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{Rs}.\:\mathrm{180}\:\mathrm{paid}\:\mathrm{for} \\ $$$$\mathrm{completing}\:\mathrm{the}\:\mathrm{work}? \\ $$
Answered by mr W last updated on 29/May/20
A does (1/(12)) work each day  B does (1/(24)) work each day  A worked 6 days alone, then A and  B work x days togother:  ((6+x)/(12))+(x/(24))=1  ⇒x=4  total work done by A: ((10)/(12))=(5/6)  total work done by B: (4/(24))=(1/6)  A should get (5/6) of the total payment,  i.e. (5/6)×180=150 Rs  B should get (1/6) of the total payment,  i.e. (1/6)×180=30 Rs
$${A}\:{does}\:\frac{\mathrm{1}}{\mathrm{12}}\:{work}\:{each}\:{day} \\ $$$${B}\:{does}\:\frac{\mathrm{1}}{\mathrm{24}}\:{work}\:{each}\:{day} \\ $$$${A}\:{worked}\:\mathrm{6}\:{days}\:{alone},\:{then}\:{A}\:{and} \\ $$$${B}\:{work}\:{x}\:{days}\:{togother}: \\ $$$$\frac{\mathrm{6}+{x}}{\mathrm{12}}+\frac{{x}}{\mathrm{24}}=\mathrm{1} \\ $$$$\Rightarrow{x}=\mathrm{4} \\ $$$${total}\:{work}\:{done}\:{by}\:{A}:\:\frac{\mathrm{10}}{\mathrm{12}}=\frac{\mathrm{5}}{\mathrm{6}} \\ $$$${total}\:{work}\:{done}\:{by}\:{B}:\:\frac{\mathrm{4}}{\mathrm{24}}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${A}\:{should}\:{get}\:\frac{\mathrm{5}}{\mathrm{6}}\:{of}\:{the}\:{total}\:{payment}, \\ $$$${i}.{e}.\:\frac{\mathrm{5}}{\mathrm{6}}×\mathrm{180}=\mathrm{150}\:{Rs} \\ $$$${B}\:{should}\:{get}\:\frac{\mathrm{1}}{\mathrm{6}}\:{of}\:{the}\:{total}\:{payment}, \\ $$$${i}.{e}.\:\frac{\mathrm{1}}{\mathrm{6}}×\mathrm{180}=\mathrm{30}\:{Rs} \\ $$
Commented by mr W last updated on 29/May/20
this is the result in mathematics.    now the result in practice:  A gets 30 Rs and B gets 150 Rs, since  B is the nephew of the boss.
$${this}\:{is}\:{the}\:{result}\:{in}\:{mathematics}. \\ $$$$ \\ $$$${now}\:{the}\:{result}\:{in}\:{practice}: \\ $$$${A}\:{gets}\:\mathrm{30}\:{Rs}\:{and}\:{B}\:{gets}\:\mathrm{150}\:{Rs},\:{since} \\ $$$${B}\:{is}\:{the}\:{nephew}\:{of}\:{the}\:{boss}. \\ $$
Commented by bobhans last updated on 29/May/20
can C get everything, because C is a thug
Commented by i jagooll last updated on 29/May/20
hahahahaha
$$\mathrm{hahahahaha} \\ $$
Commented by som(math1967) last updated on 29/May/20
Haha
$$\mathrm{Haha} \\ $$
Commented by john santu last updated on 29/May/20
������������
Answered by som(math1967) last updated on 29/May/20
A and B work together in a  day  =(1/(12)) +(1/(24))=(1/8) part of work  In 6day A complete=(6/(12))=(1/2)  A,B complete =8×(1/2)=4days  A′s work:B′s work  =10×(1/(12)):4×(1/(24))  =(5/6):(1/6)=5:1∴  ∴A′s share=(5/6)×180=Rs150
$$\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{work}\:\mathrm{together}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{day}\:\:=\frac{\mathrm{1}}{\mathrm{12}}\:+\frac{\mathrm{1}}{\mathrm{24}}=\frac{\mathrm{1}}{\mathrm{8}}\:\mathrm{part}\:\mathrm{of}\:\mathrm{work} \\ $$$$\mathrm{In}\:\mathrm{6day}\:\mathrm{A}\:\mathrm{complete}=\frac{\mathrm{6}}{\mathrm{12}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{A},\mathrm{B}\:\mathrm{complete}\:=\mathrm{8}×\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{4days} \\ $$$$\mathrm{A}'\mathrm{s}\:\mathrm{work}:\mathrm{B}'\mathrm{s}\:\mathrm{work} \\ $$$$=\mathrm{10}×\frac{\mathrm{1}}{\mathrm{12}}:\mathrm{4}×\frac{\mathrm{1}}{\mathrm{24}} \\ $$$$=\frac{\mathrm{5}}{\mathrm{6}}:\frac{\mathrm{1}}{\mathrm{6}}=\mathrm{5}:\mathrm{1}\therefore \\ $$$$\therefore\mathrm{A}'\mathrm{s}\:\mathrm{share}=\frac{\mathrm{5}}{\mathrm{6}}×\mathrm{180}=\mathrm{Rs150} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *