Menu Close

A-bag-contains-4-tickets-numbered-1-2-3-4-and-another-bag-contains-6-tickets-numbered-2-4-6-7-8-9-One-bag-is-chosen-and-a-ticket-is-drawn-The-probability-that-the-ticket-bears-the-number-4-




Question Number 99225 by BigBoss last updated on 19/Jun/20
A bag contains 4 tickets numbered 1, 2,  3, 4 and another bag contains 6 tickets  numbered  2, 4, 6, 7, 8, 9. One bag is  chosen and a ticket is drawn. The  probability that the ticket bears the  number 4 is
$$\mathrm{A}\:\mathrm{bag}\:\mathrm{contains}\:\mathrm{4}\:\mathrm{tickets}\:\mathrm{numbered}\:\mathrm{1},\:\mathrm{2}, \\ $$$$\mathrm{3},\:\mathrm{4}\:\mathrm{and}\:\mathrm{another}\:\mathrm{bag}\:\mathrm{contains}\:\mathrm{6}\:\mathrm{tickets} \\ $$$$\mathrm{numbered}\:\:\mathrm{2},\:\mathrm{4},\:\mathrm{6},\:\mathrm{7},\:\mathrm{8},\:\mathrm{9}.\:\mathrm{One}\:\mathrm{bag}\:\mathrm{is} \\ $$$$\mathrm{chosen}\:\mathrm{and}\:\mathrm{a}\:\mathrm{ticket}\:\mathrm{is}\:\mathrm{drawn}.\:\mathrm{The} \\ $$$$\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\mathrm{ticket}\:\mathrm{bears}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{4}\:\mathrm{is} \\ $$
Answered by john santu last updated on 19/Jun/20
p(A) = (1/2) ×{(1/4) + (1/6)} =  = (1/2)× (5/(12)) = (5/(24)) ■
$$\mathrm{p}\left(\mathrm{A}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:×\left\{\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{1}}{\mathrm{6}}\right\}\:= \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}×\:\frac{\mathrm{5}}{\mathrm{12}}\:=\:\frac{\mathrm{5}}{\mathrm{24}}\:\blacksquare\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *