Menu Close

A-can-do-a-work-in-10-days-and-B-can-do-the-same-work-in-15-days-How-many-days-will-they-take-if-both-work-together-




Question Number 9167 by nazar last updated on 21/Nov/16
A can do a work in 10 days and B can  do the same work in 15 days. How   many days will they take if  both work  together?
$$\mathrm{A}\:\mathrm{can}\:\mathrm{do}\:\mathrm{a}\:\mathrm{work}\:\mathrm{in}\:\mathrm{10}\:\mathrm{days}\:\mathrm{and}\:\mathrm{B}\:\mathrm{can} \\ $$$$\mathrm{do}\:\mathrm{the}\:\mathrm{same}\:\mathrm{work}\:\mathrm{in}\:\mathrm{15}\:\mathrm{days}.\:\mathrm{How}\: \\ $$$$\mathrm{many}\:\mathrm{days}\:\mathrm{will}\:\mathrm{they}\:\mathrm{take}\:\mathrm{if}\:\:\mathrm{both}\:\mathrm{work} \\ $$$$\mathrm{together}? \\ $$
Commented by tawakalitu last updated on 22/Nov/16
Let the time it take both of them be = x  ∴  x((1/(10)) + (1/(15))) = 1  ∴  x(((15 + 10)/(150))) = 1  ∴  x(((25)/(150))) = 1  ∴  x((1/6)) = 1  ∴  (x/6) = 1  Cross multiply  ∴  x = 6  Hence it will take both of them 6 days to   finish the work if they both work together.  DONE !
$$\mathrm{Let}\:\mathrm{the}\:\mathrm{time}\:\mathrm{it}\:\mathrm{take}\:\mathrm{both}\:\mathrm{of}\:\mathrm{them}\:\mathrm{be}\:=\:\mathrm{x} \\ $$$$\therefore\:\:\mathrm{x}\left(\frac{\mathrm{1}}{\mathrm{10}}\:+\:\frac{\mathrm{1}}{\mathrm{15}}\right)\:=\:\mathrm{1} \\ $$$$\therefore\:\:\mathrm{x}\left(\frac{\mathrm{15}\:+\:\mathrm{10}}{\mathrm{150}}\right)\:=\:\mathrm{1} \\ $$$$\therefore\:\:\mathrm{x}\left(\frac{\mathrm{25}}{\mathrm{150}}\right)\:=\:\mathrm{1} \\ $$$$\therefore\:\:\mathrm{x}\left(\frac{\mathrm{1}}{\mathrm{6}}\right)\:=\:\mathrm{1} \\ $$$$\therefore\:\:\frac{\mathrm{x}}{\mathrm{6}}\:=\:\mathrm{1} \\ $$$$\mathrm{Cross}\:\mathrm{multiply} \\ $$$$\therefore\:\:\mathrm{x}\:=\:\mathrm{6} \\ $$$$\mathrm{Hence}\:\mathrm{it}\:\mathrm{will}\:\mathrm{take}\:\mathrm{both}\:\mathrm{of}\:\mathrm{them}\:\mathrm{6}\:\mathrm{days}\:\mathrm{to}\: \\ $$$$\mathrm{finish}\:\mathrm{the}\:\mathrm{work}\:\mathrm{if}\:\mathrm{they}\:\mathrm{both}\:\mathrm{work}\:\mathrm{together}. \\ $$$$\mathrm{DONE}\:! \\ $$
Commented by mrW last updated on 22/Nov/16
The solution can be generalized  as following:
$$\mathrm{The}\:\mathrm{solution}\:\mathrm{can}\:\mathrm{be}\:\mathrm{generalized} \\ $$$$\mathrm{as}\:\mathrm{following}: \\ $$
Commented by mrW last updated on 22/Nov/16
Commented by sandy_suhendra last updated on 22/Nov/16
it can be solved by this way :  in 1 day A can do = (1/(10)) part of work  in 1 day B can do = (1/(15)) part of work  in 1 day A and B can do = (1/(10))+(1/(15))=(1/6) part of work  so A and B can do the work in 6 days
$$\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{by}\:\mathrm{this}\:\mathrm{way}\:: \\ $$$$\mathrm{in}\:\mathrm{1}\:\mathrm{day}\:\mathrm{A}\:\mathrm{can}\:\mathrm{do}\:=\:\frac{\mathrm{1}}{\mathrm{10}}\:\mathrm{part}\:\mathrm{of}\:\mathrm{work} \\ $$$$\mathrm{in}\:\mathrm{1}\:\mathrm{day}\:\mathrm{B}\:\mathrm{can}\:\mathrm{do}\:=\:\frac{\mathrm{1}}{\mathrm{15}}\:\mathrm{part}\:\mathrm{of}\:\mathrm{work} \\ $$$$\mathrm{in}\:\mathrm{1}\:\mathrm{day}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{can}\:\mathrm{do}\:=\:\frac{\mathrm{1}}{\mathrm{10}}+\frac{\mathrm{1}}{\mathrm{15}}=\frac{\mathrm{1}}{\mathrm{6}}\:\mathrm{part}\:\mathrm{of}\:\mathrm{work} \\ $$$$\mathrm{so}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{can}\:\mathrm{do}\:\mathrm{the}\:\mathrm{work}\:\mathrm{in}\:\mathrm{6}\:\mathrm{days} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *