Menu Close

A-solid-sphere-of-radius-4-cm-is-melted-and-recast-into-n-solid-hemispheres-of-radius-2-cm-each-Find-n-




Question Number 16418 by Mr easymsn last updated on 21/Jun/17
A solid sphere of radius 4 cm is melted  and recast into ′n′ solid hemispheres of  radius 2 cm each. Find n.
$$\mathrm{A}\:\mathrm{solid}\:\mathrm{sphere}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{4}\:\mathrm{cm}\:\mathrm{is}\:\mathrm{melted} \\ $$$$\mathrm{and}\:\mathrm{recast}\:\mathrm{into}\:'{n}'\:\mathrm{solid}\:\mathrm{hemispheres}\:\mathrm{of} \\ $$$$\mathrm{radius}\:\mathrm{2}\:\mathrm{cm}\:\mathrm{each}.\:\mathrm{Find}\:{n}. \\ $$
Answered by Tinkutara last updated on 22/Jun/17
Volume of solid sphere = Volume of n  hemispheres  (4/3)π(4)^3  = (n/2) × (4/3)π(2)^3   n = 2 × ((4/2))^3  = 16
$$\mathrm{Volume}\:\mathrm{of}\:\mathrm{solid}\:\mathrm{sphere}\:=\:\mathrm{Volume}\:\mathrm{of}\:{n} \\ $$$$\mathrm{hemispheres} \\ $$$$\frac{\mathrm{4}}{\mathrm{3}}\pi\left(\mathrm{4}\right)^{\mathrm{3}} \:=\:\frac{{n}}{\mathrm{2}}\:×\:\frac{\mathrm{4}}{\mathrm{3}}\pi\left(\mathrm{2}\right)^{\mathrm{3}} \\ $$$${n}\:=\:\mathrm{2}\:×\:\left(\frac{\mathrm{4}}{\mathrm{2}}\right)^{\mathrm{3}} \:=\:\mathrm{16} \\ $$
Commented by mrW1 last updated on 22/Jun/17
I think the question is  one sphere with radius 4 = n hemisphere with radius 2  ≡one sphere with radius 4 = (n/2) sphere with radius 2  ⇒(4/3)π(4)^3  = (n/2)×(4/3)π(2)^3   ⇒n=2((4/2))^3 =16
$$\mathrm{I}\:\mathrm{think}\:\mathrm{the}\:\mathrm{question}\:\mathrm{is} \\ $$$$\mathrm{one}\:\mathrm{sphere}\:\mathrm{with}\:\mathrm{radius}\:\mathrm{4}\:=\:\mathrm{n}\:\mathrm{hemisphere}\:\mathrm{with}\:\mathrm{radius}\:\mathrm{2} \\ $$$$\equiv\mathrm{one}\:\mathrm{sphere}\:\mathrm{with}\:\mathrm{radius}\:\mathrm{4}\:=\:\frac{\mathrm{n}}{\mathrm{2}}\:\mathrm{sphere}\:\mathrm{with}\:\mathrm{radius}\:\mathrm{2} \\ $$$$\Rightarrow\frac{\mathrm{4}}{\mathrm{3}}\pi\left(\mathrm{4}\right)^{\mathrm{3}} \:=\:\frac{\mathrm{n}}{\mathrm{2}}×\frac{\mathrm{4}}{\mathrm{3}}\pi\left(\mathrm{2}\right)^{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{n}=\mathrm{2}\left(\frac{\mathrm{4}}{\mathrm{2}}\right)^{\mathrm{3}} =\mathrm{16} \\ $$
Commented by Tinkutara last updated on 22/Jun/17
Thanks Sir! It is now corrected.
$$\mathrm{Thanks}\:\mathrm{Sir}!\:\mathrm{It}\:\mathrm{is}\:\mathrm{now}\:\mathrm{corrected}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *