Menu Close

A-solution-of-the-equation-tan-1-1-x-tan-1-1-x-pi-2-is-




Question Number 113823 by deepraj123 last updated on 15/Sep/20
A solution of the equation   tan^(−1) (1+x)+tan^(−1) (1−x) = (π/2)  is
$$\mathrm{A}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}+{x}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)\:=\:\frac{\pi}{\mathrm{2}}\:\:\mathrm{is} \\ $$
Answered by MJS_new last updated on 15/Sep/20
x=0 because arctan 1 =(π/4)
$${x}=\mathrm{0}\:\mathrm{because}\:\mathrm{arctan}\:\mathrm{1}\:=\frac{\pi}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *