Menu Close

Each-of-the-angle-between-vectors-a-b-and-c-is-equal-to-60-If-a-4-b-2-and-c-6-then-the-modulus-of-a-b-c-is-




Question Number 28640 by sk9236421@gmail.com last updated on 28/Jan/18
Each of the angle between vectors a,  b and c  is equal to 60°. If ∣a∣=4, ∣b∣=2  and ∣c∣=6, then the modulus of  a+b+c  is
Eachoftheanglebetweenvectorsa,bandcisequalto60°.Ifa∣=4,b∣=2andc∣=6,thenthemodulusofa+b+cis
Commented by ajfour last updated on 28/Jan/18
Commented by ajfour last updated on 28/Jan/18
Answered by ajfour last updated on 28/Jan/18
let  b^� =6i^�    and        a^� =2i^� +2(√3)j^�     c^�  =xi^� +yj^� +zk^�    ;  ∣c^� ∣=2  b^� .c^�  =∣b^� ∣∣c^� ∣cos 60°  ⇒   6x =6×2×(1/2)   ⇒   x=1  a^� .c^�  =∣a^� ∣∣c^� ∣cos 60°  ⇒   2x+2(√3)y =4×2×(1/2)      ⇒   2+2(√3)y=4  ⇒    y=(1/( (√3)))  as  ∣c^� ∣=2  ⇒  x^2 +y^2 +z^2 =4  so     1+(1/3)+z^2 =4  ⇒   z=±((2(√2))/( (√3)))  ∣a^� +b^� +c^� ∣=∣6i^� +2i^� +2(√3)j^� +i^� +(1/( (√3)))j^� ±((2(√2))/( (√3)))k^� ∣    =(√(81+((49)/3)+(8/3))) =(√(81+19))  ∣a^� +b^� +c^� ∣= 10 .
letb¯=6i^anda¯=2i^+23j^c¯=xi^+yj^+zk^;c¯∣=2b¯.c¯=∣b¯∣∣c¯cos60°6x=6×2×12x=1a¯.c¯=∣a¯∣∣c¯cos60°2x+23y=4×2×122+23y=4y=13asc¯∣=2x2+y2+z2=4so1+13+z2=4z=±223a¯+b¯+c¯∣=∣6i^+2i^+23j^+i^+13j^±223k^=81+493+83=81+19a¯+b¯+c¯∣=10.
Answered by ajfour last updated on 28/Jan/18
∣a^� +b^� +c^� ∣^2 =a^2 +b^2 +c^2 +2(a^� .b^� +b^� .c^� +c^� .a^� )     =16+4+36+(12+8+24) =100  ∣a^� +b^� +c^� ∣=10 .
a¯+b¯+c¯2=a2+b2+c2+2(a¯.b¯+b¯.c¯+c¯.a¯)=16+4+36+(12+8+24)=100a¯+b¯+c¯∣=10.

Leave a Reply

Your email address will not be published. Required fields are marked *