Menu Close

Each-of-the-angle-between-vectors-a-b-and-c-is-equal-to-60-If-a-4-b-2-and-c-6-then-the-modulus-of-a-b-c-is-




Question Number 28640 by sk9236421@gmail.com last updated on 28/Jan/18
Each of the angle between vectors a,  b and c  is equal to 60°. If ∣a∣=4, ∣b∣=2  and ∣c∣=6, then the modulus of  a+b+c  is
$$\mathrm{Each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{vectors}\:\boldsymbol{\mathrm{a}}, \\ $$$$\boldsymbol{\mathrm{b}}\:\mathrm{and}\:\boldsymbol{\mathrm{c}}\:\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{60}°.\:\mathrm{If}\:\mid\boldsymbol{\mathrm{a}}\mid=\mathrm{4},\:\mid\boldsymbol{\mathrm{b}}\mid=\mathrm{2} \\ $$$$\mathrm{and}\:\mid\boldsymbol{\mathrm{c}}\mid=\mathrm{6},\:\mathrm{then}\:\mathrm{the}\:\mathrm{modulus}\:\mathrm{of} \\ $$$$\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}\:\:\mathrm{is} \\ $$
Commented by ajfour last updated on 28/Jan/18
Commented by ajfour last updated on 28/Jan/18
Answered by ajfour last updated on 28/Jan/18
let  b^� =6i^�    and        a^� =2i^� +2(√3)j^�     c^�  =xi^� +yj^� +zk^�    ;  ∣c^� ∣=2  b^� .c^�  =∣b^� ∣∣c^� ∣cos 60°  ⇒   6x =6×2×(1/2)   ⇒   x=1  a^� .c^�  =∣a^� ∣∣c^� ∣cos 60°  ⇒   2x+2(√3)y =4×2×(1/2)      ⇒   2+2(√3)y=4  ⇒    y=(1/( (√3)))  as  ∣c^� ∣=2  ⇒  x^2 +y^2 +z^2 =4  so     1+(1/3)+z^2 =4  ⇒   z=±((2(√2))/( (√3)))  ∣a^� +b^� +c^� ∣=∣6i^� +2i^� +2(√3)j^� +i^� +(1/( (√3)))j^� ±((2(√2))/( (√3)))k^� ∣    =(√(81+((49)/3)+(8/3))) =(√(81+19))  ∣a^� +b^� +c^� ∣= 10 .
$${let}\:\:\bar {{b}}=\mathrm{6}\hat {{i}}\:\:\:{and} \\ $$$$\:\:\:\:\:\:\bar {{a}}=\mathrm{2}\hat {{i}}+\mathrm{2}\sqrt{\mathrm{3}}\hat {{j}} \\ $$$$\:\:\bar {{c}}\:={x}\hat {{i}}+{y}\hat {{j}}+{z}\hat {{k}}\:\:\:;\:\:\mid\bar {{c}}\mid=\mathrm{2} \\ $$$$\bar {{b}}.\bar {{c}}\:=\mid\bar {{b}}\mid\mid\bar {{c}}\mid\mathrm{cos}\:\mathrm{60}° \\ $$$$\Rightarrow\:\:\:\mathrm{6}{x}\:=\mathrm{6}×\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$\Rightarrow\:\:\:{x}=\mathrm{1} \\ $$$$\bar {{a}}.\bar {{c}}\:=\mid\bar {{a}}\mid\mid\bar {{c}}\mid\mathrm{cos}\:\mathrm{60}° \\ $$$$\Rightarrow\:\:\:\mathrm{2}{x}+\mathrm{2}\sqrt{\mathrm{3}}{y}\:=\mathrm{4}×\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\Rightarrow\:\:\:\mathrm{2}+\mathrm{2}\sqrt{\mathrm{3}}{y}=\mathrm{4} \\ $$$$\Rightarrow\:\:\:\:{y}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${as}\:\:\mid\bar {{c}}\mid=\mathrm{2}\:\:\Rightarrow\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{4} \\ $$$${so}\:\:\:\:\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+{z}^{\mathrm{2}} =\mathrm{4} \\ $$$$\Rightarrow\:\:\:{z}=\pm\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mid\bar {{a}}+\bar {{b}}+\bar {{c}}\mid=\mid\mathrm{6}\hat {{i}}+\mathrm{2}\hat {{i}}+\mathrm{2}\sqrt{\mathrm{3}}\hat {{j}}+\hat {{i}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\hat {{j}}\pm\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}\hat {{k}}\mid \\ $$$$\:\:=\sqrt{\mathrm{81}+\frac{\mathrm{49}}{\mathrm{3}}+\frac{\mathrm{8}}{\mathrm{3}}}\:=\sqrt{\mathrm{81}+\mathrm{19}} \\ $$$$\mid\bar {{a}}+\bar {{b}}+\bar {{c}}\mid=\:\mathrm{10}\:.\:\: \\ $$
Answered by ajfour last updated on 28/Jan/18
∣a^� +b^� +c^� ∣^2 =a^2 +b^2 +c^2 +2(a^� .b^� +b^� .c^� +c^� .a^� )     =16+4+36+(12+8+24) =100  ∣a^� +b^� +c^� ∣=10 .
$$\mid\bar {{a}}+\bar {{b}}+\bar {{c}}\mid^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}\left(\bar {{a}}.\bar {{b}}+\bar {{b}}.\bar {{c}}+\bar {{c}}.\bar {{a}}\right) \\ $$$$\:\:\:=\mathrm{16}+\mathrm{4}+\mathrm{36}+\left(\mathrm{12}+\mathrm{8}+\mathrm{24}\right)\:=\mathrm{100} \\ $$$$\mid\bar {{a}}+\bar {{b}}+\bar {{c}}\mid=\mathrm{10}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *