Menu Close

Find-the-greatest-four-digit-number-which-when-divided-by-18-and-12-leaves-a-remainder-of-4-in-each-case-




Question Number 59714 by Khairun Nisa last updated on 13/May/19
Find the greatest four digit number  which when divided by 18 and 12  leaves a remainder of 4 in each case
Findthegreatestfourdigitnumberwhichwhendividedby18and12leavesaremainderof4ineachcase
Answered by tanmay last updated on 14/May/19
    LCM of 18 and 12=36  ((9999)/(36))=277+((27)/(36))  now 277×36=9972  so required ans is 9972+4=9976  corrected...  Thank you Mjs sir
LCMof18and12=36999936=277+2736now277×36=9972sorequiredansis9972+4=9976correctedThankyouMjssir
Commented by Khairun Nisa last updated on 13/May/19
but the answer is given 9976
buttheanswerisgiven9976
Commented by MJS last updated on 13/May/19
just a typo?  3^(rd)  line must be  277×36=9972 ⇒ 9972+4=9976
justatypo?3rdlinemustbe277×36=99729972+4=9976
Answered by MJS last updated on 13/May/19
mod(9999,18)=9  mod(9999,12)=3  18∣(9999−9−18m)  12∣(9999−3−12n)  −9−18m=−3−12n  n=((3m+1)/2)  ⇒ m=1∧n=2  18∣9972  12∣9972  ⇒ searched number is 9976
mod(9999,18)=9mod(9999,12)=318(9999918m)12(9999312n)918m=312nn=3m+12m=1n=2189972129972searchednumberis9976

Leave a Reply

Your email address will not be published. Required fields are marked *