Menu Close

Find-the-greatest-four-digit-number-which-when-divided-by-18-and-12-leaves-a-remainder-of-4-in-each-case-




Question Number 59714 by Khairun Nisa last updated on 13/May/19
Find the greatest four digit number  which when divided by 18 and 12  leaves a remainder of 4 in each case
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{four}\:\mathrm{digit}\:\mathrm{number} \\ $$$$\mathrm{which}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{18}\:\mathrm{and}\:\mathrm{12} \\ $$$$\mathrm{leaves}\:\mathrm{a}\:\mathrm{remainder}\:\mathrm{of}\:\mathrm{4}\:\mathrm{in}\:\mathrm{each}\:\mathrm{case} \\ $$
Answered by tanmay last updated on 14/May/19
    LCM of 18 and 12=36  ((9999)/(36))=277+((27)/(36))  now 277×36=9972  so required ans is 9972+4=9976  corrected...  Thank you Mjs sir
$$ \\ $$$$ \\ $$$${LCM}\:{of}\:\mathrm{18}\:{and}\:\mathrm{12}=\mathrm{36} \\ $$$$\frac{\mathrm{9999}}{\mathrm{36}}=\mathrm{277}+\frac{\mathrm{27}}{\mathrm{36}} \\ $$$${now}\:\mathrm{277}×\mathrm{36}=\mathrm{9972} \\ $$$${so}\:{required}\:{ans}\:{is}\:\mathrm{9972}+\mathrm{4}=\mathrm{9976} \\ $$$${corrected}… \\ $$$${Thank}\:{you}\:{Mjs}\:{sir} \\ $$
Commented by Khairun Nisa last updated on 13/May/19
but the answer is given 9976
$${but}\:{the}\:{answer}\:{is}\:{given}\:\mathrm{9976}\: \\ $$
Commented by MJS last updated on 13/May/19
just a typo?  3^(rd)  line must be  277×36=9972 ⇒ 9972+4=9976
$$\mathrm{just}\:\mathrm{a}\:\mathrm{typo}? \\ $$$$\mathrm{3}^{\mathrm{rd}} \:\mathrm{line}\:\mathrm{must}\:\mathrm{be} \\ $$$$\mathrm{277}×\mathrm{36}=\mathrm{9972}\:\Rightarrow\:\mathrm{9972}+\mathrm{4}=\mathrm{9976} \\ $$
Answered by MJS last updated on 13/May/19
mod(9999,18)=9  mod(9999,12)=3  18∣(9999−9−18m)  12∣(9999−3−12n)  −9−18m=−3−12n  n=((3m+1)/2)  ⇒ m=1∧n=2  18∣9972  12∣9972  ⇒ searched number is 9976
$$\mathrm{mod}\left(\mathrm{9999},\mathrm{18}\right)=\mathrm{9} \\ $$$$\mathrm{mod}\left(\mathrm{9999},\mathrm{12}\right)=\mathrm{3} \\ $$$$\mathrm{18}\mid\left(\mathrm{9999}−\mathrm{9}−\mathrm{18}{m}\right) \\ $$$$\mathrm{12}\mid\left(\mathrm{9999}−\mathrm{3}−\mathrm{12}{n}\right) \\ $$$$−\mathrm{9}−\mathrm{18}{m}=−\mathrm{3}−\mathrm{12}{n} \\ $$$${n}=\frac{\mathrm{3}{m}+\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:{m}=\mathrm{1}\wedge{n}=\mathrm{2} \\ $$$$\mathrm{18}\mid\mathrm{9972} \\ $$$$\mathrm{12}\mid\mathrm{9972} \\ $$$$\Rightarrow\:\mathrm{searched}\:\mathrm{number}\:\mathrm{is}\:\mathrm{9976} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *