Menu Close

Find-the-value-of-x-in-1-x-1-1-x-2-3-x-3-




Question Number 62610 by hovea cw last updated on 23/Jun/19
Find the value of x in  (1/(x−1)) + (1/(x−2)) = (3/(x−3))  .
Findthevalueofxin1x1+1x2=3x3.
Commented by mathmax by abdo last updated on 24/Jun/19
the set of definition for this (e) is D =R−{1,2,3}  (e) ⇔((x−2+x−1)/((x−1)(x−2))) =(3/(x−3)) ⇒((2x−3)/(x^2 −3x+2)) =(3/(x−3)) ⇒  (2x−3)(x−3) =3(x^2 −3x+2) ⇒2x^2 −6x−3x +9 =3x^2 −9x +6 ⇒  3x^2 −9x+6−2x^2  +6x−9 =0 ⇒x^2 −3x −3 =0  Δ =9−4(−3) =9 +12 =21 ⇒x_1 =((3+(√(21)))/2)  and x_2 =((3−(√(21)))/2)
thesetofdefinitionforthis(e)isD=R{1,2,3}(e)x2+x1(x1)(x2)=3x32x3x23x+2=3x3(2x3)(x3)=3(x23x+2)2x26x3x+9=3x29x+63x29x+62x2+6x9=0x23x3=0Δ=94(3)=9+12=21x1=3+212andx2=3212
Commented by $@ty@m last updated on 24/Jun/19
Pl. check...  3x^2 −9x+6−2x^2  +6x−9 =0  should be  3x^2 −9x+6−2x^2  +6x+3x−9 =0
Pl.check3x29x+62x2+6x9=0shouldbe3x29x+62x2+6x+3x9=0
Answered by $@ty@m last updated on 23/Jun/19
(1/(x−1))−(1/(x−3)) =(2/(x−3))−(1/(x−2))   ((x−3−x+1)/((x−1)(x−3)))=((2x−4−x+3)/((x−3)(x−2)))  ((−2)/(x−1))=((x−1)/(x−2))  −2x+4=x^2 −2x+1  x^2 =3  x=(√3)
1x11x3=2x31x2x3x+1(x1)(x3)=2x4x+3(x3)(x2)2x1=x1x22x+4=x22x+1x2=3x=3
Answered by MJS last updated on 23/Jun/19
x≠1∧x≠2∧x≠3  (x−2)(x−3)+(x−1)(x−3)=3(x−1)(x−2)  x^2 =3  ⇒ x=±(√3)
x1x2x3(x2)(x3)+(x1)(x3)=3(x1)(x2)x2=3x=±3

Leave a Reply

Your email address will not be published. Required fields are marked *