Menu Close

For-a-sequence-lt-a-n-gt-a-1-2-and-a-n-1-a-n-1-3-Then-r-1-20-a-r-is-




Question Number 31952 by 24444355 last updated on 17/Mar/18
For a sequence < a_n  >  , a_1 = 2 and   (a_(n+1) /a_n ) = (1/3)  .  Then Σ_(r=1) ^(20)  a_r  is
$$\mathrm{For}\:\mathrm{a}\:\mathrm{sequence}\:<\:{a}_{{n}} \:>\:\:,\:{a}_{\mathrm{1}} =\:\mathrm{2}\:\mathrm{and}\: \\ $$$$\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\:.\:\:\mathrm{Then}\:\underset{{r}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\:{a}_{{r}} \:\mathrm{is} \\ $$
Commented by abdo imad last updated on 17/Mar/18
e have a_(n+1) =(1/3) a_n  so (a_n ) is a geometric sequence with  q=(1/3) ⇒ Σ_(r=1) ^∞  a_r =a_1 ((1−q^(20) )/(1−q)) =2 ((1 −((1/3))^(20) )/(1−(1/3)))  =2 .(3/2)(1−(1/3^(20) ))=3− (3/3^(20) ) = 3−(1/3^(19) ) .
$${e}\:{have}\:{a}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{3}}\:{a}_{{n}} \:{so}\:\left({a}_{{n}} \right)\:{is}\:{a}\:{geometric}\:{sequence}\:{with} \\ $$$${q}=\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\:\sum_{{r}=\mathrm{1}} ^{\infty} \:{a}_{{r}} ={a}_{\mathrm{1}} \frac{\mathrm{1}−{q}^{\mathrm{20}} }{\mathrm{1}−{q}}\:=\mathrm{2}\:\frac{\mathrm{1}\:−\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{20}} }{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$=\mathrm{2}\:.\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{20}} }\right)=\mathrm{3}−\:\frac{\mathrm{3}}{\mathrm{3}^{\mathrm{20}} }\:=\:\mathrm{3}−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{19}} }\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *