Menu Close

If-0-e-x-2-dx-pi-2-then-0-e-ax-2-dx-a-gt-0-is-




Question Number 53695 by gunawan last updated on 25/Jan/19
If ∫_( 0) ^∞  e^(−x^2 ) dx = (√(π/2)) , then ∫_( 0) ^∞  e^(−ax^2 ) dx,  a > 0  is
If0ex2dx=π2,then0eax2dx,a>0is
Commented by Abdo msup. last updated on 25/Jan/19
first ∫_0 ^∞  e^(−x^2 ) dx =((√π)/2) (so there is a error at the Q.)  and ∫_0 ^∞  e^(−ax^2 ) dx =_((√a)x=t)    ∫_0 ^∞   e^(−t^2 ) (dt/( (√a)))  =(1/( (√a))) ∫_0 ^∞   e^(−t^2 ) dt =(1/( (√a))) ((√π)/2) =((√π)/(2(√a)))    .
first0ex2dx=π2(sothereisaerrorattheQ.)and0eax2dx=ax=t0et2dta=1a0et2dt=1aπ2=π2a.
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19
t=ax^2   x=((√t)/( (√a)))  dx=(1/(2(√a)))×(1/( (√t)))dt  ∫_0 ^∞ e^(−t) ×(dt/(2(√a)))×(1/( (√t)))  (1/(2(√a)))∫_0 ^∞ e^(−t) ×t^((1/2)−1) dt  gamma function ∫_0 ^∞ e^(−t) t^(n−1) dt=⌈(n)  ⌈(n+1)=n!  [factorial of n]  ⌈((1/2))=(√π)   so  (1/(2(√a)))∫_0 ^∞ e^(−t) ×t^((1/2)−1) dt  =(1/(2(√a) ))×(√π)   let calculate ∫_0 ^∞ e^(−x^2 ) dx  y=x^2    x=(√y)       dx=(1/(2(√y)))dy  ∫_0 ^∞ e^(−y) ×(1/2)×y^(−(1/2)) dy  (1/2)∫_0 ^∞ e^(−y) y^((1/2)−1) dy  (1/2)×⌈((1/2))=((√π)/2)  so i think ∫_0 ^∞ e^(−x^2 ) dx=((√π)/2) (  not ((√π)/( (√2))))
t=ax2x=tadx=12a×1tdt0et×dt2a×1t12a0et×t121dtgammafunction0ettn1dt=(n)(n+1)=n![factorialofn](12)=πso12a0et×t121dt=12a×πletcalculate0ex2dxy=x2x=ydx=12ydy0ey×12×y12dy120eyy121dy12×(12)=π2soithink0ex2dx=π2(\boldsymbolnotπ2)

Leave a Reply

Your email address will not be published. Required fields are marked *