Menu Close

If-0-pi-1-a-b-cos-x-dx-a-gt-0-is-equal-to-pi-a-2-b-2-then-0-pi-1-a-b-cos-x-2-dx-




Question Number 64267 by Chi Mes Try last updated on 16/Jul/19
If ∫_( 0) ^π   (1/(a+b cos x)) dx, a>0 is equal to (π/( (√(a^2 −b^2 )))) ,  then ∫_( 0) ^π    (1/((a+b cos x)^2 )) dx =
Ifπ01a+bcosxdx,a>0isequaltoπa2b2,thenπ01(a+bcosx)2dx=
Commented by Prithwish sen last updated on 16/Jul/19
∫_0 ^π (d/da)[(1/(a+bcosx))]dx =(d/da) (π/( (√(a^2 −b^2 ))))  ∫_0 ^π (dx/((1+cosx)^2 )) = ((aπ)/((a^2 −b^2 )^(3/2) ))  please check.
0πdda[1a+bcosx]dx=ddaπa2b20πdx(1+cosx)2=aπ(a2b2)32pleasecheck.
Answered by Tanmay chaudhury last updated on 16/Jul/19
∫_0 ^π (dx/(a(sin^2 (x/2)+cos^2 (x/2))+b(cos^2 (x/2)−sin^2 (x/2))))  ∫_0 ^π (dx/((a+b)cos^2 (x/2)+(a−b)sin^2 (x/2)))  ∫_0 ^π ((sec^2 (x/2))/((a+b)+(a−b)tan^2 (x/2)))  (1/(a−b))∫_0 ^π ((sec^2 (x/2)dx)/(((√((a+b)/(a−b))) )^2 +tan^2 (x/2)))  p=tan(x/2)   (dp/dx)=sec^2 (x/2)×(1/2)  (1/(a−b))∫_0 ^∞ ((2dp)/(((√((a+b)/(a−b))) )^2 +p^2 ))  (2/(a−b))×(1/( (√((a+b)/(a−b)))))∣tan^(−1) ((p/( (√((a+b)/(a−b))) )))∣_0 ^∞   =(2/( (√(a^2 −b^2 ))))×[tan^(−1) (∞)]  =(π/( (√(a^2 −b^2 ))))  I(a,b)=∫_0 ^π (dx/(a+bcosx))=(π/( (√(a^2 −b^2 ))))  (dI/da)=∫_0 ^π (∂/∂a)((1/(a+bcosx)))dx=π(∂/∂a){(a^2 −b^2 )^((−1)/2) }  (dI/da)=∫_0 ^π ((−1)/((a+bcosx)^2 ))×(1+0)dx=((−π)/2)×(a^2 −b^2 )^((−3)/2) ×2a  so∫_0 ^π ((−dx)/((a+bcosx)^2 ))=((−πa)/((a^2 −b^2 )^(3/2) ))  so ∫_0 ^π (dx/((a+bcosx)^2 ))=((πa)/((a^2 −b^2 )^(3/2)   ))  Tanmay  16.07.19
0πdxa(sin2x2+cos2x2)+b(cos2x2sin2x2)0πdx(a+b)cos2x2+(ab)sin2x20πsec2x2(a+b)+(ab)tan2x21ab0πsec2x2dx(a+bab)2+tan2x2p=tanx2dpdx=sec2x2×121ab02dp(a+bab)2+p22ab×1a+babtan1(pa+bab)0=2a2b2×[tan1()]=πa2b2I(a,b)=0πdxa+bcosx=πa2b2dIda=0πa(1a+bcosx)dx=πa{(a2b2)12}dIda=0π1(a+bcosx)2×(1+0)dx=π2×(a2b2)32×2aso0πdx(a+bcosx)2=πa(a2b2)32so0πdx(a+bcosx)2=πa(a2b2)32Tanmay16.07.19

Leave a Reply

Your email address will not be published. Required fields are marked *