Menu Close

If-1-1-2-1-2-2-1-3-2-to-pi-2-6-then-1-1-2-1-3-2-1-5-2-equals-




Question Number 26521 by Samar khan last updated on 26/Dec/17
If  (1/1^2 ) + (1/2^2 ) + (1/3^2 ) + ...to ∞ = (π^2 /6), then  (1/1^2 ) + (1/3^2 ) + (1/5^2 ) + ... equals
$$\mathrm{If}\:\:\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\:+\:…\mathrm{to}\:\infty\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}},\:\mathrm{then} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }\:+\:…\:\mathrm{equals} \\ $$
Commented by abdo imad last updated on 26/Dec/17
Σ_(n=1) ^∝   (1/n^2 )  =    Σ_(p=1) ^∝  (1/((2p)^2 ))  +  Σ_(p=0) ^∝  (1/((2p+1)^2 ))  ⇒   Σ_(p=1) ^∝  (1/((2p+1)^2 )) = (1−(1/4))Σ_(n=1) ^∝  (1/n^2 )  = (3/4) (π^2 /6)  =  (π^2 /8)
$$\sum_{{n}=\mathrm{1}} ^{\propto} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:=\:\:\:\:\sum_{{p}=\mathrm{1}} ^{\propto} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}\right)^{\mathrm{2}} }\:\:+\:\:\sum_{{p}=\mathrm{0}} ^{\propto} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:\sum_{{p}=\mathrm{1}} ^{\propto} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right)\sum_{{n}=\mathrm{1}} ^{\propto} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:=\:\frac{\mathrm{3}}{\mathrm{4}}\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:=\:\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$
Answered by ajfour last updated on 26/Dec/17
((1/1^2 )+(1/3^2 )+(1/5^2 )+..)+(1/4)((1/1^2 )+(1/2^2 )+(1/3^2 )+..)=(π^2 /6)  so  (1/1^2 )+(1/3^2 )+(1/5^2 )+..=(3/4)((π^2 /6))=(π^2 /8) .
$$\left(\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }+..\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+..\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$${so}\:\:\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }+..=\frac{\mathrm{3}}{\mathrm{4}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *