Menu Close

If-1-2x-x-2-n-r-0-2n-a-r-x-r-then-a-r-




Question Number 56137 by gunawan last updated on 11/Mar/19
If (1+2x+x^2 )^n  = Σ_(r=0) ^(2n)  a_r  x^r , then a_r =
If(1+2x+x2)n=2nr=0arxr,thenar=
Commented by maxmathsup by imad last updated on 11/Mar/19
(1+2x+x^2 )^n =(x+1)^(2n)  =Σ_(r=0) ^(2n)  C_(2n) ^r  x^r  ⇒a_r =C_(2n) ^r  =(((2n)!)/(r!(2n−r)!))  and r∈[[0,2n]].
(1+2x+x2)n=(x+1)2n=r=02nC2nrxrar=C2nr=(2n)!r!(2nr)!andr[[0,2n]].
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Mar/19
(1+2x+x^2 )^n   (1+x)^(2n) =a_0 x^0 +a_1 x^1 +a_2 x^2 +...+a_(2n) x^(2n)   put  x=1  2^(2n) =Σ_(r=0) ^(2n) a_r   r+1 the term   2nc_r x^(2n)   so   a_r =2nc_r =((2n!)/(r!(2n−r)!))
(1+2x+x2)n(1+x)2n=a0x0+a1x1+a2x2++a2nx2nputx=122n=2nr=0arr+1theterm2ncrx2nsoar=2ncr=2n!r!(2nr)!

Leave a Reply

Your email address will not be published. Required fields are marked *