Menu Close

If-1-sin-x-4-sin-x-1-dx-A-1-tan-x-2-1-B-tan-1-f-x-C-then-




Question Number 53383 by gunawan last updated on 21/Jan/19
If ∫(1/((sin x+4)(sin x−1)))dx           = A(1/(tan (x/2)−1))+B tan^(−1) (f(x))+C, then
If1(sinx+4)(sinx1)dx=A1tanx21+Btan1(f(x))+C,then
Commented by maxmathsup by imad last updated on 21/Jan/19
let A =∫    (dx/((sinx+4)(sinx−1))) ⇒A =_(tan((x/2))=t)    ∫   (1/((((2t)/(1+t^2 )) +4)(((2t)/(1+t^2 ))−1))) ((2dt)/(1+t^2 ))  = ∫    (2/((4t^2 +4+2t)(2t−1−t^2 ))) (((1+t^2 )^2 )/(1+t^2 ))dt  =2∫     ((1+t^2 )/((4t^2  +2t+4)(−t^2 +2t−1))) dt =−∫   ((1+t^2 )/((2t^2  +t+2)(t−1)^2 ))dt  let decompose F(t)=((t^2  +1)/((2t^2  +t+2)(t−1)^2 )) ⇒F(t)=(a/(t−1)) +(b/((t−1)^2 )) +((ct +d)/(2t^2  +t+2))  b=lim_(t→1) (t−1)^2 F(t)=(2/5)  lim_(t→+∞) tF(t)=0 =a +(c/2) ⇒c=−2a ⇒  F(t)=(a/(t−1)) +(2/(5(t−1)^2 )) +((−2at +d)/(2t^2  +t+2))  F(0)=(1/2) =−a +(2/5) +(d/2) ⇒1 =−2a+(4/5) +d ⇒−2a+d=1−(4/5) =(1/5)  F(2)=(5/(12)) =a +(2/5) +((−4a+d)/(12)) ⇒5=12a +((24)/5) −4a+d ⇒5−((24)/5) =8a +d ⇒  8a+d =(1/5) ⇒d=(1/5) −8a ⇒−2a+(1/5) −8a =(1/5) ⇒a=0 ⇒d=(1/5) ⇒  F(t)=(2/(5(t−1)^2 )) +(1/(5(2t^2  +t+2))) ⇒A =−(2/5) ∫ (dt/((t−1)^2 )) −(1/5) ∫  (dt/(2t^2  +t+2))  ∫  (dt/((t−1)^2 )) =−(1/(t−1)) +c_1   ∫   (dt/(2t^2  +t +2)) =(1/2) ∫  (dt/(t^2  +2(1/4)t  +(1/(16))+1−(1/(16)))) =(1/2) ∫  (dt/((t+(1/4))^2  +((15)/(16))))  =_(t+(1/4)=((√(15))/4)u)  (1/2)  ∫   (1/(((15)/(16))(1+u^2 ))) ((√(15))/4) du=(1/2) .((16)/(15)) .((√(15))/4) arctan(u)+c_2   =(2/( (√(15)))) arctan(((4t+1)/( (√(15))))) +c_2  ⇒A=(2/5) (1/(tan((x/2))−1)) −(1/(5(√(15)))) arctan(((4tan((x/2))+1)/( (√(15))))) +C  ⇒A =(2/5)  , B =−(1/(5(√(15))))  , f(x)=((4arctan((x/2))+1)/( (√(15)))) .
letA=dx(sinx+4)(sinx1)A=tan(x2)=t1(2t1+t2+4)(2t1+t21)2dt1+t2=2(4t2+4+2t)(2t1t2)(1+t2)21+t2dt=21+t2(4t2+2t+4)(t2+2t1)dt=1+t2(2t2+t+2)(t1)2dtletdecomposeF(t)=t2+1(2t2+t+2)(t1)2F(t)=at1+b(t1)2+ct+d2t2+t+2b=limt1(t1)2F(t)=25limt+tF(t)=0=a+c2c=2aF(t)=at1+25(t1)2+2at+d2t2+t+2F(0)=12=a+25+d21=2a+45+d2a+d=145=15F(2)=512=a+25+4a+d125=12a+2454a+d5245=8a+d8a+d=15d=158a2a+158a=15a=0d=15F(t)=25(t1)2+15(2t2+t+2)A=25dt(t1)215dt2t2+t+2dt(t1)2=1t1+c1dt2t2+t+2=12dtt2+214t+116+1116=12dt(t+14)2+1516=t+14=154u1211516(1+u2)154du=12.1615.154arctan(u)+c2=215arctan(4t+115)+c2A=251tan(x2)11515arctan(4tan(x2)+115)+CA=25,B=1515,f(x)=4arctan(x2)+115.
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jan/19
(1/5)∫(((sinx+4)−(sinx−1))/((sinx+4)(sinx−1)))dx  (1/5)∫(dx/(sinx−1))−(1/5)∫(dx/(sinx+4))    ∫(dx/(a+sinx))  ∫(dx/(a+((2tan(x/2))/(1+tan^2 (x/2)))))  ∫((sec^2 (x/2)dx)/(a+atan^2 (x/2)+2tan(x/2)))  k=tan(x/2)  2dk=sec^2 (x/2)dx  ∫((2dk)/(a+ak^2 +2k))  (2/a)∫(dk/(1+k^2 +2(k/a)))  (2/a)∫(dk/(k^2 +2×k×(1/a)+(1/a^2 )+1−(1/a^2 )))  (2/a)∫(dk/((k+(1/a))^2 +(((√(a^2 −1))/a))^2 ))  (2/a)×(1/((((√(a^2 −1))/a))))×tan^(−1) (((k+(1/a))/((√(a^2 −1))/a)))+c  =(2/( (√(a^2 −1))))tan^(−1) (((ak+1)/( (√(a^2 −1)))))+c  =(2/( (√(a^2 −1))))tan^(−1) (((atan(x/2)+1)/( (√(a^2 −1)))))+c    now (1/5)∫(dx/(−1+sinx))−(1/5)∫(dx/(4+sinx))  =(−(1/5))[∫(dx/(1−sinx))+∫(dx/(4+sinx))]  =(((−1)/5))[∫((1+sinx)/(cos^2 x))dx+(2/( (√(16−1))))tan^(−1) (((4tan(x/2)+1)/( (√(4^2 −1)))))]  =(((−1)/5))[tanx+secx+(2/( (√(15))))tan^(−1) (((4tan(x/2)+1)/( (√(15)))))]  =(((−1)/5))[((((2tan(x/2))/(1+tan^2 (x/2)))+1)/((1−tan^2 (x/2))/(1+tan^2 (x/2))))+do]  =(((−1)/5))[(((1+tan(x/2))^2 )/((1+tan(x/2))(1−tan(x/2))))+do]  =(((−1)/5))(((1+tan(x/2))/(1−tan(x/2))))+(((−2)/(5(√(15)) )))(tan^(−1) (((4tan(x/2)+1)/( (√(15)) )))
15(sinx+4)(sinx1)(sinx+4)(sinx1)dx15dxsinx115dxsinx+4dxa+sinxdxa+2tanx21+tan2x2sec2x2dxa+atan2x2+2tanx2k=tanx22dk=sec2x2dx2dka+ak2+2k2adk1+k2+2ka2adkk2+2×k×1a+1a2+11a22adk(k+1a)2+(a21a)22a×1(a21a)×tan1(k+1aa21a)+c=2a21tan1(ak+1a21)+c=2a21tan1(atanx2+1a21)+cnow15dx1+sinx15dx4+sinx=(15)[dx1sinx+dx4+sinx]=(15)[1+sinxcos2xdx+2161tan1(4tanx2+1421)]=(15)[tanx+secx+215tan1(4tanx2+115)]=(15)[2tanx21+tan2x2+11tan2x21+tan2x2+do]=(15)[(1+tanx2)2(1+tanx2)(1tanx2)+do]=(15)(1+tanx21tanx2)+(2515)(tan1(4tanx2+115)

Leave a Reply

Your email address will not be published. Required fields are marked *