If-1-sin-x-4-sin-x-1-dx-A-1-tan-x-2-1-B-tan-1-f-x-C-then- Tinku Tara June 14, 2023 None 0 Comments FacebookTweetPin Question Number 53383 by gunawan last updated on 21/Jan/19 If∫1(sinx+4)(sinx−1)dx=A1tanx2−1+Btan−1(f(x))+C,then Commented by maxmathsup by imad last updated on 21/Jan/19 letA=∫dx(sinx+4)(sinx−1)⇒A=tan(x2)=t∫1(2t1+t2+4)(2t1+t2−1)2dt1+t2=∫2(4t2+4+2t)(2t−1−t2)(1+t2)21+t2dt=2∫1+t2(4t2+2t+4)(−t2+2t−1)dt=−∫1+t2(2t2+t+2)(t−1)2dtletdecomposeF(t)=t2+1(2t2+t+2)(t−1)2⇒F(t)=at−1+b(t−1)2+ct+d2t2+t+2b=limt→1(t−1)2F(t)=25limt→+∞tF(t)=0=a+c2⇒c=−2a⇒F(t)=at−1+25(t−1)2+−2at+d2t2+t+2F(0)=12=−a+25+d2⇒1=−2a+45+d⇒−2a+d=1−45=15F(2)=512=a+25+−4a+d12⇒5=12a+245−4a+d⇒5−245=8a+d⇒8a+d=15⇒d=15−8a⇒−2a+15−8a=15⇒a=0⇒d=15⇒F(t)=25(t−1)2+15(2t2+t+2)⇒A=−25∫dt(t−1)2−15∫dt2t2+t+2∫dt(t−1)2=−1t−1+c1∫dt2t2+t+2=12∫dtt2+214t+116+1−116=12∫dt(t+14)2+1516=t+14=154u12∫11516(1+u2)154du=12.1615.154arctan(u)+c2=215arctan(4t+115)+c2⇒A=251tan(x2)−1−1515arctan(4tan(x2)+115)+C⇒A=25,B=−1515,f(x)=4arctan(x2)+115. Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jan/19 15∫(sinx+4)−(sinx−1)(sinx+4)(sinx−1)dx15∫dxsinx−1−15∫dxsinx+4∫dxa+sinx∫dxa+2tanx21+tan2x2∫sec2x2dxa+atan2x2+2tanx2k=tanx22dk=sec2x2dx∫2dka+ak2+2k2a∫dk1+k2+2ka2a∫dkk2+2×k×1a+1a2+1−1a22a∫dk(k+1a)2+(a2−1a)22a×1(a2−1a)×tan−1(k+1aa2−1a)+c=2a2−1tan−1(ak+1a2−1)+c=2a2−1tan−1(atanx2+1a2−1)+cnow15∫dx−1+sinx−15∫dx4+sinx=(−15)[∫dx1−sinx+∫dx4+sinx]=(−15)[∫1+sinxcos2xdx+216−1tan−1(4tanx2+142−1)]=(−15)[tanx+secx+215tan−1(4tanx2+115)]=(−15)[2tanx21+tan2x2+11−tan2x21+tan2x2+do]=(−15)[(1+tanx2)2(1+tanx2)(1−tanx2)+do]=(−15)(1+tanx21−tanx2)+(−2515)(tan−1(4tanx2+115) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: cos-3-x-e-log-sin-x-dx-Next Next post: The-value-of-the-integral-0-pi-x-dx-1-cos-sin-0-lt-lt-pi-is- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.