Menu Close

If-1-x-2-1-x-2-4-dx-A-tan-1-x-B-tan-1-x-2-C-then-




Question Number 86897 by ram roop sharma last updated on 01/Apr/20
If ∫ (1/((x^2 +1)(x^2 +4))) dx          =  A tan^(−1) x+B tan^(−1) (x/2)+C, then
$$\mathrm{If}\:\int\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:=\:\:{A}\:\mathrm{tan}^{−\mathrm{1}} {x}+{B}\:\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\mathrm{2}}+{C},\:\mathrm{then} \\ $$
Commented by Tony Lin last updated on 01/Apr/20
(d/dx)(Atan^(−1) x+Btan^(−1) (x/2)+C)  =(A/(x^2 +1))+(B/(((x/2))^2 +1))×(1/2)  =(A/(x^2 +1))+((2B)/(x^2 +4))  =((A(x^2 +4)+2B(x^2 +1))/((x^2 +1)(x^2 +4)))  ⇒ { ((A+2B=0)),((4A+2B=1)) :}  ⇒A=(1/3) , B=−(1/6)
$$\frac{{d}}{{dx}}\left({Atan}^{−\mathrm{1}} {x}+{Btan}^{−\mathrm{1}} \frac{{x}}{\mathrm{2}}+{C}\right) \\ $$$$=\frac{{A}}{{x}^{\mathrm{2}} +\mathrm{1}}+\frac{{B}}{\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{1}}×\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{{A}}{{x}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{2}{B}}{{x}^{\mathrm{2}} +\mathrm{4}} \\ $$$$=\frac{{A}\left({x}^{\mathrm{2}} +\mathrm{4}\right)+\mathrm{2}{B}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)} \\ $$$$\Rightarrow\begin{cases}{{A}+\mathrm{2}{B}=\mathrm{0}}\\{\mathrm{4}{A}+\mathrm{2}{B}=\mathrm{1}}\end{cases} \\ $$$$\Rightarrow{A}=\frac{\mathrm{1}}{\mathrm{3}}\:,\:{B}=−\frac{\mathrm{1}}{\mathrm{6}} \\ $$
Answered by redmiiuser last updated on 01/Apr/20
A=(1/3)  B=−(1/6)
$${A}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${B}=−\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$ \\ $$
Commented by redmiiuser last updated on 01/Apr/20
simple way to solve  is by partial fractions.
$${simple}\:{way}\:{to}\:{solve} \\ $$$${is}\:{by}\:{partial}\:{fractions}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *