Menu Close

If-1-x-n-C-0-C-1-x-C-2-x-2-C-n-x-n-then-for-n-odd-C-0-2-C-1-2-C-2-2-C-3-2-1-n-C-n-2-is-equal-to-




Question Number 56141 by gunawan last updated on 11/Mar/19
If (1+x)^n =C_0 +C_1 x+C_2 x^2 +...+C_n x^n , then  for n odd, C_0 ^2 −C_1 ^2 +C_2 ^2 −C_3 ^2 +...+(−1)^n C_n ^2   is equal to
If(1+x)n=C0+C1x+C2x2++Cnxn,thenfornodd,C02C12+C22C32++(1)nCn2isequalto
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Mar/19
(1+x)^n =c_0 +c_1 x+c_2 x^2 +...+c_n x^n   (1−(1/x))^n =c_0 −c_1 ×(1/x)+c_2 ×(1/x^2 )+...+(−1)^n ×(1/x^n )  {(1+x)(1−(1/x))}^n   ={1−(1/x)+x−1}^n   =(x−(1/x))^n   let r+1 th term contains x^0 [x independent term]  nc_r (x)^(n−r) (((−1)/x))^r   ((n!)/(r!(n−r)!))×x^(n−r) ×(−1)^r ×(1/x^r )  ((n!)/(r!(n−r)!))×(−1)^r ×x^(n−2r)   so n−2r=0   →r=(n/2)  hence  c_0 ^2 −c_1 ^2 +c_2 ^2  ....+(−1)^n c_n ^2 =((n!)/(((n/2))!((n/2))!))×(−1)^(n/2)
(1+x)n=c0+c1x+c2x2++cnxn(11x)n=c0c1×1x+c2×1x2++(1)n×1xn{(1+x)(11x)}n={11x+x1}n=(x1x)nletr+1thtermcontainsx0[xindependentterm]ncr(x)nr(1x)rn!r!(nr)!×xnr×(1)r×1xrn!r!(nr)!×(1)r×xn2rson2r=0r=n2hencec02c12+c22.+(1)ncn2=n!(n2)!(n2)!×(1)n2

Leave a Reply

Your email address will not be published. Required fields are marked *