Menu Close

If-4-e-x-6-e-x-9-e-x-4-e-x-dx-Ax-B-log-9e-2x-4-C-then-




Question Number 63865 by mmkkmm000m last updated on 10/Jul/19
If ∫  ((4 e^x + 6 e^(−x) )/(9 e^x − 4 e^(−x) ))dx=Ax+B log(9e^(2x) −4)+C,  then
If4ex+6ex9ex4exdx=Ax+Blog(9e2x4)+C,then
Commented by kaivan.ahmadi last updated on 10/Jul/19
(Ax+Blog(9e^(2x) −4))^′ =((4e^x +6e^(−x) )/(9e^x −4e^(−x) ))   but  the left hand side is equal to  A+B×((18e^(2x) )/(9e^(2x) −4))×(1/(ln10))=A+(B/(ln10))×((18e^x )/(9e^x −4e^(−x) ))=  ((9Ae^x ln10−4Ae^(−x) ln10+18Be^x )/(ln10(9e^x −4e^(−x) )))=  (((9A+((18)/(ln10))B)e^x −4Ae^(−x) )/(9e^x −4e^(−x) ))⇒   { ((4A=6⇒A=(3/2))),((9A+((18)/(ln10))B=4⇒((18)/(ln10))B=((−19)/2)⇒B=((−19ln10)/(36)))) :}
(Ax+Blog(9e2x4))=4ex+6ex9ex4exbutthelefthandsideisequaltoA+B×18e2x9e2x4×1ln10=A+Bln10×18ex9ex4ex=9Aexln104Aexln10+18Bexln10(9ex4ex)=(9A+18ln10B)ex4Aex9ex4ex{4A=6A=329A+18ln10B=418ln10B=192B=19ln1036
Commented by mathmax by abdo last updated on 10/Jul/19
let I =∫ ((4e^x  +6e^(−x) )/(9e^x −4 e^(−x) ))dx[⇒I =∫  ((4e^(2x)  +6)/(9e^(2x) −4))dx  changement e^(2x) =t give  I =∫   ((4t+6)/(9t−4)) (dt/(2t)) =∫   ((2t+3)/(t(9t−4)))dt let decompose F(t)=((2t+3)/(t(9t−4)))  F(t)=(a/t) + (b/(9t−4))  a=lim_(t→0) tF(t)=−(3/4)  b=lim_(t→(4/9))    (9t−4)F(t) =((2×(4/9)+3)/(4/9)) =((8+27)/4) =((35)/4) ⇒  F(t)=−(3/(4t)) +((35)/(4(9t−4))) ⇒I =∫(−(3/(4t))+((35)/(4(9t−4))))dt  =−(3/4)ln∣t∣ +((35)/(36))ln∣9t−4∣ +c  −(3/4)(2x)+((35)/(36))ln∣9e^(2x) −4∣ +c  =−(3/2)x +((35)/(36))ln∣9e^(2x) −4∣ +c ⇒  A=−(3/2),    B =((35)/(36))  and  C =c .
letI=4ex+6ex9ex4exdx[I=4e2x+69e2x4dxchangemente2x=tgiveI=4t+69t4dt2t=2t+3t(9t4)dtletdecomposeF(t)=2t+3t(9t4)F(t)=at+b9t4a=limt0tF(t)=34b=limt49(9t4)F(t)=2×49+349=8+274=354F(t)=34t+354(9t4)I=(34t+354(9t4))dt=34lnt+3536ln9t4+c34(2x)+3536ln9e2x4+c=32x+3536ln9e2x4+cA=32,B=3536andC=c.

Leave a Reply

Your email address will not be published. Required fields are marked *