Menu Close

If-a-0-then-the-real-values-of-x-satisfying-x-2-2a-x-a-3a-2-0-are-




Question Number 5638 by Daily last updated on 23/May/16
If a≤ 0, then the real values of x  satisfying x^2 −2a ∣ x−a ∣−3a^2 =0 are
Ifa0,thentherealvaluesofxsatisfyingx22axa3a2=0are
Answered by Yozzii last updated on 23/May/16
We can look for solutions based on  intervals that cover the entire real line.  a≤0 is some fixed real value.  If x−a>0 or x>a⇒∣x−a∣=x−a.  ∴ x^2 −2a(x−a)−3a^2 =0  x^2 −2ax−a^2 =0  x^2 −2ax+a^2 −2a^2 =0  (x−a)^2 =2a^2   ⇒x=a±(√2)(√a^2 )  x=a±(√2)∣a∣ which are real values of x.  a≤0⇒∣a∣=−a⇒x=(1±(√2))a  Now x>a⇒ x≠(1+(√2))a but x=(1−(√2))a  since a≤0.{a≤0⇒(1−(√2))a≥0≥a or x≥a}    If x=a≤0 the equation gives  a^2 −3a^2 =0⇒2a^2 =0. This is true only if a=0.  ∴ x=0 is possible.    If x−a<0⇒x<a⇒∣x−a∣=a−x.  ∴ x^2 −2a(a−x)−3a^2 =0  x^2 +2ax−5a^2 =0  x^2 +2ax+a^2 −6a^2 =0  (x+a)^2 =6a^2   ⇒x=−a±(√6)∣a∣=a(−1±(√6))  Since a≤0 and x<a⇒x≠(−1−(√6))a  but x=a((√6)−1).    ∴ If a=0 the quadratic equation has  two equal roots then x=0. If a≠0 then   x=((√6)−1)a or x=(1−(√2))a.
Wecanlookforsolutionsbasedonintervalsthatcovertheentirerealline.a0issomefixedrealvalue.Ifxa>0orx>a⇒∣xa∣=xa.x22a(xa)3a2=0x22axa2=0x22ax+a22a2=0(xa)2=2a2x=a±2a2x=a±2awhicharerealvaluesofx.a0⇒∣a∣=ax=(1±2)aNowx>ax(1+2)abutx=(12)asincea0.{a0(12)a0aorxa}Ifx=a0theequationgivesa23a2=02a2=0.Thisistrueonlyifa=0.x=0ispossible.Ifxa<0x<a⇒∣xa∣=ax.x22a(ax)3a2=0x2+2ax5a2=0x2+2ax+a26a2=0(x+a)2=6a2x=a±6a∣=a(1±6)Sincea0andx<ax(16)abutx=a(61).Ifa=0thequadraticequationhastwoequalrootsthenx=0.Ifa0thenx=(61)aorx=(12)a.

Leave a Reply

Your email address will not be published. Required fields are marked *