Menu Close

If-a-1-a-2-a-3-a-4-are-the-coefficient-of-any-four-four-consecutive-terms-in-the-expansion-of-1-x-n-then-a-1-a-1-a-2-a-3-a-3-a-4-is-equal-to-




Question Number 18757 by 786786AM last updated on 29/Jul/17
If a_1 , a_2 , a_3 , a_4  are the coefficient of any  four four consecutive terms in the expansion  of (1+x)^n , then (a_1 /(a_1 +a_2 )) + (a_3 /(a_3 +a_4 )) is equal to
$$\mathrm{If}\:{a}_{\mathrm{1}} ,\:{a}_{\mathrm{2}} ,\:{a}_{\mathrm{3}} ,\:{a}_{\mathrm{4}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{any} \\ $$$$\mathrm{four}\:\mathrm{four}\:\mathrm{consecutive}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion} \\ $$$$\mathrm{of}\:\left(\mathrm{1}+{x}\right)^{{n}} ,\:\mathrm{then}\:\frac{{a}_{\mathrm{1}} }{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} }\:+\:\frac{{a}_{\mathrm{3}} }{{a}_{\mathrm{3}} +{a}_{\mathrm{4}} }\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *