Question Number 97737 by bagjamath last updated on 09/Jun/20
$$\mathrm{If}\:\:^{\left({a}^{\mathrm{2}} −{a}\right)} {C}_{\mathrm{2}} =\:^{\left({a}^{\mathrm{2}} −{a}\right)} {C}_{\mathrm{4}} \:,\:\mathrm{then}\:{a}\:= \\ $$
Commented by som(math1967) last updated on 09/Jun/20
$$\mathrm{a}=\mathrm{3} \\ $$
Commented by smridha last updated on 09/Jun/20
$${you}\:\boldsymbol{{have}}\:\boldsymbol{{to}}\:\boldsymbol{{put}}..\boldsymbol{{in}}\:\boldsymbol{{which}}\:\boldsymbol{{set}} \\ $$$$\boldsymbol{{does}}\:'\boldsymbol{{a}}'\:\boldsymbol{{belong}}?? \\ $$
Commented by mr W last updated on 09/Jun/20
$${a}^{\mathrm{2}} −{a}=\mathrm{2}+\mathrm{4}=\mathrm{6} \\ $$$$\left({a}+\mathrm{2}\right)\left({a}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow{a}=\mathrm{3} \\ $$
Answered by smridha last updated on 09/Jun/20
$$\frac{\left(\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{a}}\right)!}{\mathrm{2}!\left(\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{a}}−\mathrm{2}\right)!}=\frac{\left({a}^{\mathrm{2}} −\boldsymbol{{a}}\right)!}{\mathrm{4}!\left(\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{a}}−\mathrm{4}\right)!} \\ $$$$\left(\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{a}}−\mathrm{2}\right)\left(\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{a}}−\mathrm{3}\right)=\mathrm{12} \\ $$$$\boldsymbol{{let}}\:\left(\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{a}}−\mathrm{2}\right)=\boldsymbol{{x}} \\ $$$$\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{x}}−\mathrm{12}=\mathrm{0}\:\boldsymbol{{x}}=\frac{\mathrm{1}\underset{−} {+}\mathrm{7}}{\mathrm{2}}\:\boldsymbol{{x}}=\left(\mathrm{4},−\mathrm{3}\right) \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{x}}=\mathrm{4} \\ $$$$\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{a}}−\mathrm{6}=\mathrm{0}\:\boldsymbol{{a}}=\frac{\mathrm{1}\underset{−} {+}\mathrm{5}}{\mathrm{2}}\:\boldsymbol{{so}}\:\boldsymbol{{a}}=\left(\mathrm{3},−\mathrm{2}\right) \\ $$$${for}\:\boldsymbol{{x}}=−\mathrm{3} \\ $$$$\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{a}}+\mathrm{1}=\mathrm{0}\:\:\boldsymbol{{so}}\:\boldsymbol{{a}}=\frac{\mathrm{1}\underset{−} {+}\boldsymbol{{i}}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\boldsymbol{{a}}=\left(\boldsymbol{{e}}^{\frac{\boldsymbol{{i}\pi}}{\mathrm{3}}} ,\boldsymbol{{e}}^{\frac{−\boldsymbol{{i}\pi}}{\mathrm{3}}} \right) \\ $$$$ \\ $$
Commented by smridha last updated on 09/Jun/20
$$\boldsymbol{{I}}\:{am}\:\boldsymbol{{not}}\:\boldsymbol{{fighting}}\:\boldsymbol{{with}}\:\boldsymbol{{others}}… \\ $$$$\boldsymbol{{but}}\:\boldsymbol{{you}}\:\boldsymbol{{tried}}\:\boldsymbol{{to}}\:\boldsymbol{{do}}\:\boldsymbol{{so}}\:\boldsymbol{{I}}\:{think}.. \\ $$$$\boldsymbol{{I}}\:{just}\:\boldsymbol{{wanted}}\:\boldsymbol{{to}}\:\boldsymbol{{tell}}\:\boldsymbol{{two}}\:\boldsymbol{{simple}} \\ $$$$\boldsymbol{{things}}\:\left(\boldsymbol{{i}}\right)\boldsymbol{{I}}\:{am}\:\boldsymbol{{not}}\:\boldsymbol{{claim}}\:\boldsymbol{{all}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{possible}}\:\boldsymbol{{values}}\:\boldsymbol{{of}}\:\:\boldsymbol{{a}}\:\boldsymbol{{are}}\:\:\boldsymbol{{the}}\: \\ $$$$\boldsymbol{{solutions}}\left(\boldsymbol{{ii}}\right)\:\boldsymbol{{even}}\:\boldsymbol{{I}}\:{d}\boldsymbol{{id}}{not}\:{con}\boldsymbol{{clude}} \\ $$$$\boldsymbol{{anything}}\:\boldsymbol{{so}}\:\boldsymbol{{why}}\:\boldsymbol{{you}}\:\boldsymbol{{are}}\:\boldsymbol{{the}}\:\boldsymbol{{guys}} \\ $$$$\boldsymbol{{are}}\:\boldsymbol{{so}}\:\boldsymbol{{worrid}}\:\boldsymbol{{with}}\:\boldsymbol{{that}}… \\ $$$$\boldsymbol{{am}}\:\boldsymbol{{I}}\:{criti}\boldsymbol{{cize}}\:\boldsymbol{{anyone}}??\boldsymbol{{if}}\:\boldsymbol{{this}} \\ $$$$\boldsymbol{{is}}\:\boldsymbol{{so}}\:\boldsymbol{{simple}}\:\boldsymbol{{matter}}\:\boldsymbol{{then}}\:\boldsymbol{{it}}\:\boldsymbol{{is}}\:\boldsymbol{{not}} \\ $$$$\boldsymbol{{requare}}\:\boldsymbol{{furthur}}\:\boldsymbol{{comment}}. \\ $$
Commented by mathmax by abdo last updated on 09/Jun/20
$$\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{in}\:\mathrm{combination}…! \\ $$
Commented by smridha last updated on 09/Jun/20
$$\boldsymbol{{am}}\:\boldsymbol{{I}}\:\boldsymbol{{put}}\:\boldsymbol{{complex}}\:\boldsymbol{{number}}\:\boldsymbol{{in}} \\ $$$$\boldsymbol{{combination}}???\boldsymbol{{then}}\:\boldsymbol{{what}}?? \\ $$$$\boldsymbol{{I}}\:\boldsymbol{{just}}\:\boldsymbol{{show}}\:\boldsymbol{{how}}\:\boldsymbol{{many}}\:\boldsymbol{{values}} \\ $$$$\boldsymbol{{a}}\:\boldsymbol{{have}}??\boldsymbol{{I}}\:\boldsymbol{{don}}'\boldsymbol{{t}}\:\boldsymbol{{claim}}\:\boldsymbol{{all}}\:\boldsymbol{{the}}\: \\ $$$$\boldsymbol{{possible}}\:\boldsymbol{{values}}\:\boldsymbol{{must}}\:\boldsymbol{{satisfy}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{combination}}…… \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{apperence}}\:\boldsymbol{{of}}\:\boldsymbol{{this}}\:\boldsymbol{{question}}\:\boldsymbol{{is}} \\ $$$$\boldsymbol{{wrong}}!!!\:\boldsymbol{{find}}\:\boldsymbol{{a}}???\boldsymbol{{what}}\:\boldsymbol{{does}}\:\boldsymbol{{it}}\: \\ $$$$\boldsymbol{{mean}}??\boldsymbol{{we}}\:\boldsymbol{{log}}{i}\boldsymbol{{cally}}\:\boldsymbol{{choose}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{a}}\:\boldsymbol{{among}}\:\boldsymbol{{the}}\:\boldsymbol{{values}} \\ $$$$\boldsymbol{{of}}\:\boldsymbol{{a}}.\boldsymbol{{so}}\:\boldsymbol{{it}}\:\boldsymbol{{does}}\:\boldsymbol{{not}}\:\boldsymbol{{mean}}\:\boldsymbol{{that}}\:\boldsymbol{{a}} \\ $$$$\boldsymbol{{have}}\:\boldsymbol{{only}}\:\boldsymbol{{possible}}\:\boldsymbol{{value}}\:\mathrm{3}..\: \\ $$$$\boldsymbol{{moreover}}\:\boldsymbol{{it}}\:\boldsymbol{{means}}\:\boldsymbol{{a}}\:\boldsymbol{{takes}}\:\boldsymbol{{value}} \\ $$$$\mathrm{3}\:\boldsymbol{{for}}\:\boldsymbol{{satisfy}}\:\boldsymbol{{this}}\:\boldsymbol{{combination}}. \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{this}}\:\boldsymbol{{combination}}\:\mathrm{3}\:\boldsymbol{{is}}\:\boldsymbol{{unique}} \\ $$$$\boldsymbol{{value}}\:\:\left(\boldsymbol{{of}}\:\boldsymbol{{a}}\right)\:\boldsymbol{{but}}\:\boldsymbol{{not}}\:\boldsymbol{{for}}\:\boldsymbol{{a}}. \\ $$
Commented by mr W last updated on 09/Jun/20
$${as}\:{for}\:{the}\:{answer}\:{of}\:{this}\:{question}, \\ $$$${the}\:{only}\:{correct}\:{answer}\:{is}\:{a}=\mathrm{3},\:{other} \\ $$$${values}\:{of}\:{a}\:{are}\:{non}−{sense}\:{for}\:{this} \\ $$$${question}. \\ $$$${i}\:{think}\:{as}\:{C}_{\mathrm{2}} ^{{a}^{\mathrm{2}} −{a}} ={C}_{\mathrm{4}} ^{{a}^{\mathrm{2}} −{a}} \:{is}\:{written},\:{it}\:{is} \\ $$$${automatically}\:{said}\:{due}\:{to}\:{definition} \\ $$$${that}\:\boldsymbol{{a}}\in\mathbb{Z}\:{and}\:{a}^{\mathrm{2}} −{a}\geqslant\mathrm{2}\:{and}\:\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{a}}\geqslant\mathrm{4}. \\ $$
Commented by smridha last updated on 09/Jun/20
$$\boldsymbol{{ooh}}\:\boldsymbol{{man}}!!\boldsymbol{{am}}\:\boldsymbol{{i}}\:\boldsymbol{{claim}}\:\boldsymbol{{all}}\:\boldsymbol{{the}}\:\boldsymbol{{possible}} \\ $$$$\boldsymbol{{values}}\:\boldsymbol{{satisfy}}\:\boldsymbol{{this}}\:\boldsymbol{{combination}}?? \\ $$$$\boldsymbol{{even}}\:\boldsymbol{{am}}\:\boldsymbol{{I}}\:\boldsymbol{{put}}\:\boldsymbol{{any}}\:\boldsymbol{{conclution}}\:\boldsymbol{{in}}\:\boldsymbol{{my}} \\ $$$$\:\boldsymbol{{solution}}?? \\ $$$$\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{the}}\:\boldsymbol{{question}}\:\boldsymbol{{of}}\:\boldsymbol{{how}}\:\boldsymbol{{much}} \\ $$$${we}\:\boldsymbol{{can}}\:\boldsymbol{{do}}?? \\ $$$$\boldsymbol{{we}}\:\boldsymbol{{have}}\:\boldsymbol{{any}}\:\boldsymbol{{idea}}??\boldsymbol{{about}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{factorial}}\:\boldsymbol{{of}}\:\boldsymbol{{complex}}\:\boldsymbol{{number}}!! \\ $$$$\boldsymbol{{factorial}}\:\boldsymbol{{of}}\:\boldsymbol{{negetive}}\:\boldsymbol{{intiger}}!! \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{we}}\:\boldsymbol{{ignore}}\:\boldsymbol{{them}}….\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{fault}}.\boldsymbol{{if}}\:\boldsymbol{{there}}\:\boldsymbol{{is}}\:\boldsymbol{{theory}}\:\boldsymbol{{behind}}\: \\ $$$$\boldsymbol{{them}}\:\boldsymbol{{we}}\:\boldsymbol{{are}}\:\boldsymbol{{then}}\:\boldsymbol{{satisfied}}..\boldsymbol{{is}}\:\boldsymbol{{not}} \\ $$$$\boldsymbol{{it}}???? \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 09/Jun/20
$${sir}:\:{nobody}\:{said}\:{that}\:{you}\:{are}\:{wrong} \\ $$$${or}\:{something}\:{like}\:{that}.\:{it}\:{seems} \\ $$$${you}\:{see}\:{critical}\:{comments}\:{from}\:{others} \\ $$$${as}\:{attacks}\:{and}\:{want}\:{to}\:{fight}\:{back}. \\ $$$${what}\:{a}\:{pity}!\:{since}\:{a}\:{forum}\:{is}\:{place}\:{for} \\ $$$${discussion},{exchange}\:{and}\:{learning} \\ $$$${from}\:{each}\:{other}.\:{all}\:{people}\:{here}\:{are} \\ $$$${equal}. \\ $$
Commented by abdomathmax last updated on 09/Jun/20
$$\mathrm{your}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{not}\:\mathrm{correct}\: \\ $$
Commented by smridha last updated on 09/Jun/20
$$\boldsymbol{{M}}{r}\:{Ab}\boldsymbol{{domathmax}}\::\boldsymbol{{am}}\:\boldsymbol{{I}}\:{write}\:\boldsymbol{{any}}\:\boldsymbol{{values}}\:\boldsymbol{{as}}\:\boldsymbol{{ans}}?? \\ $$$$\boldsymbol{{if}}\:\boldsymbol{{you}}\:\boldsymbol{{think}}\:\boldsymbol{{that}}\:\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{your}}\: \\ $$$$\boldsymbol{{fult}}\:\boldsymbol{{not}}\:\boldsymbol{{mine}}..!! \\ $$
Commented by mathmax by abdo last updated on 09/Jun/20
$$\mathrm{dont}\:\mathrm{worry}\:\mathrm{and}\:\mathrm{be}\:\mathrm{happy}\:\mathrm{we}\:\mathrm{are}\:\mathrm{here}\:\mathrm{to}\:\mathrm{help}\:\:\mathrm{and}\:\mathrm{learn}…\mathrm{maths}\:\mathrm{is}\:\mathrm{a}\:\mathrm{sea} \\ $$$$\mathrm{without}\:\mathrm{borders}….! \\ $$
Answered by mathmax by abdo last updated on 09/Jun/20
$$\mathrm{C}_{\mathrm{a}^{\mathrm{2}} −\mathrm{a}} ^{\mathrm{2}} \:=\mathrm{C}_{\mathrm{a}^{\mathrm{2}} −\mathrm{a}} ^{\mathrm{4}} \:\Rightarrow\frac{\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}\right)!}{\mathrm{2}!\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\mathrm{2}\right)!}\:=\frac{\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}\right)!}{\mathrm{4}!\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\mathrm{4}\right)!}\:\:\left(\mathrm{a}\geqslant\mathrm{2}\right)\:\Rightarrow \\ $$$$\mathrm{2}!\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\mathrm{2}\right)!\:=\mathrm{4}!\:\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\mathrm{4}\right)!\:\Rightarrow \\ $$$$\mathrm{2}\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\mathrm{2}\right)\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\mathrm{3}\right)\:=\mathrm{4}!\:\Rightarrow\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\mathrm{2}\right)\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\mathrm{3}\right)\:=\frac{\mathrm{4}.\mathrm{3}.\mathrm{2}}{\mathrm{2}}\:=\mathrm{12} \\ $$$$\mathrm{let}\:\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\mathrm{2}\:=\mathrm{2u}\:\mathrm{and}\:\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\mathrm{3}\:=\mathrm{2v}+\mathrm{1}\:\Rightarrow\mathrm{2v}\:+\mathrm{1}\:=\mathrm{2u}−\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{2u}.\left(\mathrm{2v}+\mathrm{1}\right)\:=\mathrm{12}\:\Rightarrow\mathrm{u}\left(\mathrm{2u}−\mathrm{1}\right)\:=\mathrm{6}\:\Rightarrow\mathrm{2u}^{\mathrm{2}} −\mathrm{u}−\mathrm{6}\:=\mathrm{0}\:\:\left(\mathrm{u}\:\mathrm{integr}\:\mathrm{natural}\right) \\ $$$$\Delta\:=\mathrm{1}−\mathrm{4}×\mathrm{2}×\left(−\mathrm{6}\right)\:=\mathrm{1}+\mathrm{48}\:=\mathrm{49}\:\Rightarrow\mathrm{u}_{\mathrm{1}} =\frac{\mathrm{1}+\mathrm{7}}{\mathrm{4}}\:=\mathrm{2} \\ $$$$\mathrm{u}_{\mathrm{2}} =\frac{\mathrm{1}−\mathrm{7}}{\mathrm{4}}\:=−\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{to}\:\mathrm{elminate}\right)\:\Rightarrow\mathrm{u}=\mathrm{2}\:\Rightarrow\mathrm{a}^{\mathrm{2}} −\mathrm{a}\:=\mathrm{2}+\mathrm{4}\:=\mathrm{6}\:\Rightarrow\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\mathrm{6}\:=\mathrm{0} \\ $$$$\Delta=\mathrm{1}−\mathrm{4}\left(−\mathrm{6}\right)\:=\mathrm{25}\:\Rightarrow\mathrm{a}\:=\frac{\mathrm{1}+\mathrm{5}}{\mathrm{2}}\:=\mathrm{3}\:\:\mathrm{or}\:\mathrm{a}\:=\frac{\mathrm{1}−\mathrm{5}}{\mathrm{2}}\:=−\mathrm{2}<\mathrm{0}\left(\mathrm{to}\:\mathrm{eliminate}\right) \\ $$$$\mathrm{the}\:\mathrm{unique}\:\mathrm{value}\:\mathrm{is}\:\mathrm{a}\:=\mathrm{3} \\ $$$$ \\ $$