Menu Close

If-A-4-x-2-2x-3-x-1-is-symmetric-then-x-




Question Number 55841 by gunawan last updated on 05/Mar/19
If A= [((    4),(x+2)),((2x−3),(x+1)) ] is symmetric, then x=
$$\mathrm{If}\:{A}=\begin{bmatrix}{\:\:\:\:\mathrm{4}}&{{x}+\mathrm{2}}\\{\mathrm{2}{x}−\mathrm{3}}&{{x}+\mathrm{1}}\end{bmatrix}\:\mathrm{is}\:\mathrm{symmetric},\:\mathrm{then}\:{x}= \\ $$
Answered by gunawan last updated on 05/Mar/19
A=A^t    [(4,(x+2)),((2x−3),(x+1)) ]= [(4,(2x−3)),((x+2),(x+1)) ]  x+2=2x−3  x=5
$${A}={A}^{{t}} \\ $$$$\begin{bmatrix}{\mathrm{4}}&{{x}+\mathrm{2}}\\{\mathrm{2}{x}−\mathrm{3}}&{{x}+\mathrm{1}}\end{bmatrix}=\begin{bmatrix}{\mathrm{4}}&{\mathrm{2}{x}−\mathrm{3}}\\{{x}+\mathrm{2}}&{{x}+\mathrm{1}}\end{bmatrix} \\ $$$${x}+\mathrm{2}=\mathrm{2}{x}−\mathrm{3} \\ $$$${x}=\mathrm{5} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *