Menu Close

If-A-B-are-two-square-matrices-such-that-AB-A-and-BA-B-then-




Question Number 98369 by nesreen last updated on 13/Jun/20
If A, B are two square matrices such  that AB = A and BA = B, then
$$\mathrm{If}\:{A},\:{B}\:\mathrm{are}\:\mathrm{two}\:\mathrm{square}\:\mathrm{matrices}\:\mathrm{such} \\ $$$$\mathrm{that}\:{AB}\:=\:{A}\:\mathrm{and}\:{BA}\:=\:{B},\:\mathrm{then} \\ $$
Answered by bobhans last updated on 13/Jun/20
A^(−1) AB=A^(−1) A ⇒ B = I  B^(−1) BA=B^(−1) B ⇒ A=I   then A=B=I
$$\mathrm{A}^{−\mathrm{1}} \mathrm{AB}=\mathrm{A}^{−\mathrm{1}} \mathrm{A}\:\Rightarrow\:\mathrm{B}\:=\:\mathrm{I} \\ $$$$\mathrm{B}^{−\mathrm{1}} \mathrm{BA}=\mathrm{B}^{−\mathrm{1}} \mathrm{B}\:\Rightarrow\:\mathrm{A}=\mathrm{I}\: \\ $$$$\mathrm{then}\:\mathrm{A}=\mathrm{B}=\mathrm{I} \\ $$
Answered by Rio Michael last updated on 13/Jun/20
Also  AB = A and BA = B  ⇒ A(BA) = A  ⇒ (AB) A = A  ⇒ (A)(A) = A  ⇒ A^2  = A similarly, B^2  = B
$$\mathrm{Also}\:\:{AB}\:=\:{A}\:\mathrm{and}\:{BA}\:=\:{B} \\ $$$$\Rightarrow\:{A}\left({BA}\right)\:=\:{A} \\ $$$$\Rightarrow\:\left({AB}\right)\:{A}\:=\:{A} \\ $$$$\Rightarrow\:\left({A}\right)\left({A}\right)\:=\:{A} \\ $$$$\Rightarrow\:{A}^{\mathrm{2}} \:=\:{A}\:\mathrm{similarly},\:{B}^{\mathrm{2}} \:=\:{B} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *