If-a-b-c-0-one-root-of-determinant-a-x-c-b-c-b-x-a-b-a-c-x-0-is- Tinku Tara June 14, 2023 None 0 Comments FacebookTweetPin Question Number 107330 by saorey0202 last updated on 10/Aug/20 Ifa+b+c=0onerootof|a−xcbcb−xabac−x|=0is Answered by som(math1967) last updated on 10/Aug/20 |a+b+c−xa+b+c−xa+b+c−xcb−xabac−x|=0[R1′→R1+R2+R3](a+b+c−x)|111cb−xabac−x|=0(a+b+c−x)|001c−b+xb−x−aab−aa−c+xc−x|=0★(a+b+c−x)|c−b+xb−x−ab−aa−c+x|=0(a+b+c−x)(x2−a2−b2−c2+ab+bc+ca)=0⇒x=(a+b+c)=0x=±a2+b2+c2−ab−bc−ca★C1′→C1−C2C2′→C2−C3 Answered by 1549442205PVT last updated on 10/Aug/20 Wehave|a−xcbcb−xabac−x|=0⇔(a−x)(b−x)(c−x)+2abc−b2(b−x)−c2(c−x)−a2(a−x)=0⇔−x3+(a+b+c)x2+(a2+b2+c2−ab−bc−ca)x−(a3+b3+c3−2abc)+abc=0⇔x3−(a+b+c)x2−(a2+b2+c2−ab−bc−ca)x+(a3+b3+c3−3abc)=0(∗)Applytheidentitya3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)(1)wehave(∗)⇔x2[x−(a+b+c)]−(a2+b2+c2−ab−bc−ca)x+(a+b+c)(a2+b2+c2−ab−bc−ca)=0⇔(∗)⇔x2[x−(a+b+c)]−[x−(a+b+c)](a2+b2+c2−ab−bc−ca)=0⇔[x−(a+b+c)].[x2−(a2+b2+c2−ab−bc−ca)]=0Thisshowthatx=a+b+cisarootoftheequation(∗)(\boldsymbolq.\boldsymbole.\boldsymbold)Inadition,weseethatthegivenhastwoanotherrealrootsthatarex=±a2+b2+c2−ab−bc−ca.Theunderrootexpressionisnon−negativenumbersincewehavealwaysa2+b2+c2−ab−bc−ca=12[(a−b)2+(b−c)2+(c−a)2]⩾0∀a,b,c∈R Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-A-is-an-invertible-matrix-then-det-A-1-is-equal-to-Next Next post: If-are-the-roots-of-the-equation-ax-2-bx-c-0-then-the-value-of-the-determinant-determinant-1-cos-cos-cos-1-cos-cos-cos-1-is- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.