Menu Close

If-a-b-c-0-one-root-of-determinant-a-x-c-b-c-b-x-a-b-a-c-x-0-is-




Question Number 107330 by saorey0202 last updated on 10/Aug/20
If   a+b+c=0 one root of   determinant (((a−x),(    c),(   b)),((    c),(b−x),(   a)),((    b),(   a),(c−x)))=0 is
Ifa+b+c=0onerootof|axcbcbxabacx|=0is
Answered by som(math1967) last updated on 10/Aug/20
 determinant (((a+b+c−x),(a+b+c−x),(a+b+c−x)),(c,(b−x),a),(b,a,(c−x)))=0  [R_1 ^′ →R_1 +R_2 +R_3 ]  (a+b+c−x) determinant ((1,1,1),(c,(b−x),a),(b,(a ),(c−x)))=0  (a+b+c−x) determinant ((0,0,1),((c−b+x),(b−x−a),a),((b−a),(a−c+x),(c−x)))=0★  (a+b+c−x) determinant (((c−b+x),(b−x−a)),((b−a),(a−c+x)))=0  (a+b+c−x)(x^2 −a^2 −b^2 −c^2 +ab+bc+ca)=0  ⇒x=(a+b+c)=0  x=±(√(a^2 +b^2 +c^2 −ab−bc−ca))  ★C_1 ^′ →C_1 −C_2   C_2 ^′ →C_2 −C_3
|a+b+cxa+b+cxa+b+cxcbxabacx|=0[R1R1+R2+R3](a+b+cx)|111cbxabacx|=0(a+b+cx)|001cb+xbxaabaac+xcx|=0(a+b+cx)|cb+xbxabaac+x|=0(a+b+cx)(x2a2b2c2+ab+bc+ca)=0x=(a+b+c)=0x=±a2+b2+c2abbccaC1C1C2C2C2C3
Answered by 1549442205PVT last updated on 10/Aug/20
We have  determinant (((a−x),(    c),(   b)),((    c),(b−x),(   a)),((    b),(   a),(c−x)))=0   ⇔(a−x)(b−x)(c−x)+2abc−b^2 (b−x)−c^2 (c−x)−a^2 (a−x)=0  ⇔−x^3 +(a+b+c)x^2 +(a^2 +b^2 +c^2 −ab−bc−ca)x  −(a^3 +b^3 +c^3 −2abc)+abc=0  ⇔x^3 −(a+b+c)x^2 −(a^2 +b^2 +c^2 −ab−bc−ca)x  +(a^3 +b^3 +c^3 −3abc)=0(∗)  Apply the identity   a^3 +b^3 +c^3 −3abc=(a+b+c)(a^2 +b^2 +c^2 −ab−bc−ca)(1)we have  (∗)⇔x^2 [x−(a+b+c)]−(a^2 +b^2 +c^2 −ab−bc−ca)x  +(a+b+c)(a^2 +b^2 +c^2 −ab−bc−ca)=0  ⇔(∗)⇔x^2 [x−(a+b+c)]−[x−(a+b+c)](a^2 +b^2 +c^2 −ab−bc−ca)=0  ⇔[x−(a+b+c)].[x^2 −(a^2 +b^2 +c^2 −ab−bc−ca)]=0  This show that x=a+b+c is a root of  the equation (∗)(q.e.d)   In adition,we see that the given has   two another real roots that are  x=±(√(a^2 +b^2 +c^2 −ab−bc−ca))   .The under root expression is non−negative  number since we have always  a^2 +b^2 +c^2 −ab−bc−ca=  (1/2)[(a−b)^2 +(b−c)^2 +(c−a)^2 ]≥0∀a,b,c∈R
Wehave|axcbcbxabacx|=0(ax)(bx)(cx)+2abcb2(bx)c2(cx)a2(ax)=0x3+(a+b+c)x2+(a2+b2+c2abbcca)x(a3+b3+c32abc)+abc=0x3(a+b+c)x2(a2+b2+c2abbcca)x+(a3+b3+c33abc)=0()Applytheidentitya3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)(1)wehave()x2[x(a+b+c)](a2+b2+c2abbcca)x+(a+b+c)(a2+b2+c2abbcca)=0()x2[x(a+b+c)][x(a+b+c)](a2+b2+c2abbcca)=0[x(a+b+c)].[x2(a2+b2+c2abbcca)]=0Thisshowthatx=a+b+cisarootoftheequation()(q.e.d)Inadition,weseethatthegivenhastwoanotherrealrootsthatarex=±a2+b2+c2abbcca.Theunderrootexpressionisnonnegativenumbersincewehavealwaysa2+b2+c2abbcca=12[(ab)2+(bc)2+(ca)2]0a,b,cR

Leave a Reply

Your email address will not be published. Required fields are marked *